首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 250 毫秒
1.
模糊C均值聚类算法(FCM)是一种流行的聚类算法,在许多工程领域有着广泛的应用.密度加权的模糊C均值算法(Density Weighted FCM)是对传统FCM的一种改进,它可以很好的解决FCM对噪声敏感的问题.但是DWFCM与FCM都没有解决聚类结果很大程度上依赖初始聚类中心的选择好坏的问题.提出一种基于最近邻居节点对密度的FCM改进算法Improved-DWFCM,通过最近邻居节点估计节点密度的方法解决聚类结果对初始簇中心依赖的问题.仿真结果表明这种算法选择出来的初始聚类中心与最终结果的簇中心非常接近,大大提高了算法收敛的速度以及聚类的效果.  相似文献   

2.
层次聚类算法的改进及分析   总被引:2,自引:0,他引:2  
层次凝聚算法是一个非常有用的聚类算法,它在迭代地凝聚每次接近对直到所有的数据都属于同一个簇.但层次聚类也存在着几个缺点,如聚类时的时空复杂性高;聚类的簇效率低、误差较大等.经验研究表明,大部分HAC算法都有这样一个趋势:除了在谱系图的顶层,所有低层聚类的簇都是比较小的并且很接近于其他的簇,提出了一种改进算法能够减小时空复杂性并能验证其正确性,分析与实验都证明这种方法是非常有效的.  相似文献   

3.
模糊C-均值聚类算法的改进   总被引:1,自引:0,他引:1  
针对传统的模糊C-均值算法FCM受初始聚类中心影响而易于收敛到局部极小值的问题,提出了具体的改进方法.初始聚类中心不再随机获取而是通过改进的算法有目的地进行选取,同时采用冗余聚类中心的方法先将大簇分割成多个小类,再按一定条件将相邻的小类合并.实验结果表明,改进后的FCM算法减小了对初始聚类中心的依赖,聚类结果更加精确.  相似文献   

4.
戈国华  肖海波  张敏 《福建电脑》2007,(4):89-89,126
聚类是数据挖掘中常用的数据分析技术.本文详细介绍了FCM聚类算法的理论和实现步骤.并用Matlab演示了FCM用于数据聚类.结果表明FCM算法是一种高效的数据聚类算法,有很广泛的应用.  相似文献   

5.
K-means算法所使用的聚类准则函数是将数据集中各个簇的误差平方值直接相加而得到的,不能有效处理簇的密度不均且大小差异较大的数据集。为此,将K-means算法的聚类准则函数定义为加权的簇内标准差之和,权重为簇内数据对象数占总数目的比例。同时,调整了传统K-means算法将数据对象重新分配给簇的方法,采用一个数据对象到中心点的加权距离代替传统K-means算法中的距离,将数据对象分配给使加权距离最小的中心点所在的簇。实验结果表明,针对模拟数据集的聚类,改进K-means算法可以明显减少大而稀的簇中数据对象被错误地分配到相邻的小而密簇的可能性,改善了聚类的质量;针对UCI数据集的聚类,改进算法使得各个簇更为紧凑,从而验证了改进K-means算法的有效性。  相似文献   

6.
模糊 C 均值(FCM)聚类算法采取随机选取聚类中心的方法,这种方法使得 FCM 算法在局部范围内容易获得最优解,但在全局范围内效果较差,且 FCM 算法中聚类簇的个数一般需要人为设定.面对上述种种问题,文中将蚁群聚类算法和 FCM 聚类算法进行结合,获得了一种改进的 FCM 聚类算法.该算法在初步聚类中利用蚁群聚类产生聚类中心和簇的个数,将产生的聚类中心提供给 FCM 算法进行再次聚类.利用蚁群聚类的全局搜索和并行运算的优点避免了聚类易陷入局部最优解的缺陷.经过实验验证,该算法较一般 FCM 算法具有更好的性能.  相似文献   

7.
改进的粒子群优化模糊C均值聚类算法   总被引:9,自引:4,他引:5  
针对传统模糊C均值聚类算法(FCM)存在对初值敏感和易陷入局部收敛的缺陷,利用改进的粒子群算法对FCM进行优化,提出一种新的模糊C均值聚类算法Improved PSOFCM,并建立基于熵的聚类有效性函数,对聚类算法的性能进行客观评价。数据集实验表明,Improved PSOFCM算法不仅能克服传统FCM算法的不足,而且在聚类正确率和有效性上也优于基于粒子群与基于遗传优化的FCM算法。  相似文献   

8.
针对模糊C均值(FCM)算法聚类数需要预先设定的问题,提出了一种新的模糊聚类有效性指标。首先,计算簇中每个属性的方差,给方差较小的属性赋予较大的权值,给方差较大的属性赋予较小的权值,得到一种基于属性加权的FCM算法;然后,根据FCM改进算法得到的隶属度矩阵计算类内紧致性和类间分离性;最后,利用类内紧致性和类间分离性定义一个新的聚类有效性指标。实验结果表明,该指标可以找到符合数据自然分布的类的数目。基于属性加权的FCM算法可以识别不同属性的重要程度,增加聚类结果的准确率,使用FCM改进算法得到的隶属度矩阵定义的有效性指标,能够发现正确的聚类个数,实现聚类无监督的学习过程。  相似文献   

9.
一种基于核的快速可能性聚类算法   总被引:1,自引:1,他引:0       下载免费PDF全文
传统的快速聚类算法大多基于模糊C均值算法(Fuzzy C-means,FCM),而FCM对初始聚类中心敏感,对噪音数据敏感并且容易收敛到局部极小值,因而聚类准确率不高。可能性C-均值聚类较好地解决了FCM对噪声敏感的问题,但容易产生一致性聚类。将FCM和可能性C-均值聚类结合的聚类算法较好地解决了一致性聚类问题。为进一步提高算法收敛速度和鲁棒性,提出一种基于核的快速可能性聚类算法。该方法引入核聚类的思想,同时使用样本方差对目标函数中参数η进行优化。标准数据集和人造数据集的实验结果表明这种基于核的快速可能性聚类算法提高了算法的聚类准确率,加快了收敛速度。  相似文献   

10.
庞淑敬  彭建 《微计算机信息》2012,(1):161-162,172
针对数据集中若存在孤立点或者是噪声数据会影响模糊C均值聚类算法(FCM)的聚类性能问题,本文将离群点的辨认方法与FCM算法相结合,提出一种改进的FCM聚类算法。该算法有效地降低了孤立点或噪声数据对正常数据的影响,提高了FCM算法的聚类精度。将该算法在入侵检测系统中进行实验验证,通过与FCM算法进行对比分析,证明了该算法的有效性和可行性。  相似文献   

11.
石文峰  商琳 《计算机科学》2017,44(9):45-48, 66
Fuzzy C-Means(FCM)是模糊聚类中聚类效果较好且应用较为广泛的聚类算法,但是其对初始聚类数的敏感性导致如何选择一个较好的C值 变得十分重要。因此,确定FCM的聚类数是使用FCM进行聚类分析时的一个至关重要的步骤。通过扩展决策粗糙集模型进行聚类的有效性分析,并进一步确定FCM的聚类数,从而避免了使用FCM时不好的初始化所带来的影响。文中提出了一种基于扩展粗糙集模型的模糊C均值聚类数的确定方法,并通过图像分割实验来验证聚类的效果。实验通过比对不同聚类数下分类结果的代价获得了一个较好的分割结果,并将结果与Z.Yu等人于2015年提出的蚁群模糊C均值混合算法(AFHA)以及提高的AFHA算法(IAFHA)进行对比,结果表明所提方法的聚类结果较好,图像分割效果较明显,Bezdek分割系数比AFHA和IAFHA算法的更高,且在Xie-Beni系数上也有较大优势。  相似文献   

12.
一种新的聚类分析算法   总被引:5,自引:0,他引:5       下载免费PDF全文
给出了一种新的无监督聚类算法,但这种算法并非是基于目标函数的聚类算法,而是对数据直接设计一种迭代运算,以使数据在保持类特征的情况下进行重新组合最终达到分类的目的。通过对一类数据的实验表明,该算法在无监督给出类数方面具有较好的鲁棒性;另外,该算法在数据的准确归类、无监督聚类、确定性,以及对特殊类分布的适用性等方面均优于HCM和FCM算法,  相似文献   

13.
传统模糊聚类算法如模糊C-均值(FCM)算法中,用户必须预先指定聚类类别数C,且目标函数收敛速度过慢。为此,将粒度分析原理应用在FCM算法中,提出了基于粒度原理确定聚类类别数的方法,并采用密度函数法初始化聚类中心。实验结果表明,改进后的聚类算法能够得到合理有效的聚类数目,并且与随机初始化相比,迭代次数明显减少,收敛速度明显加快。  相似文献   

14.
基于减法聚类和快速紧密性函数的SF-FCM   总被引:1,自引:0,他引:1  
李洪波 《控制与决策》2011,26(7):1074-1078
首先结合减法聚类和模糊C-均值聚类各自的优点,运用减法聚类自适应地确定模糊C-均值聚类(FCM)的初始聚类数;然后,提出了改进的紧密性函数,以此改进用于确定FCM聚类结构的有效性函数.改进后的紧密性函数将对聚类结果贡献不大的数据予以剔除,使得算法适应能力更强,执行速度更快.实验结果表明,该快速紧密性函数是有效的,而且计算速度更快.  相似文献   

15.
Fuzzy C-means (FCM) clustering has been widely used successfully in many real-world applications. However, the FCM algorithm is sensitive to the initial prototypes, and it cannot handle non-traditional curved clusters. In this paper, a multi-center fuzzy C-means algorithm based on transitive closure and spectral clustering (MFCM-TCSC) is provided. In this algorithm, the initial guesses of the locations of the cluster centers or the membership values are not necessary. Multi-centers are adopted to represent the non-spherical shape of clusters. Thus, the clustering algorithm with multi-center clusters can handle non-traditional curved clusters. The novel algorithm contains three phases. First, the dataset is partitioned into some subclusters by FCM algorithm with multi-centers. Then, the subclusters are merged by spectral clustering. Finally, based on these two clustering results, the final results are obtained. When merging subclusters, we adopt the lattice similarity method as the distance between two subclusters, which has explicit form when we use the fuzzy membership values of subclusters as the features. Experimental results on two artificial datasets, UCI dataset and real image segmentation show that the proposed method outperforms traditional FCM algorithm and spectral clustering obviously in efficiency and robustness.  相似文献   

16.
Fuzzy c-means (FCM) is one of the most popular techniques for data clustering. Since FCM tends to balance the number of data points in each cluster, centers of smaller clusters are forced to drift to larger adjacent clusters. For datasets with unbalanced clusters, the partition results of FCM are usually unsatisfactory. Cluster size insensitive FCM (csiFCM) dealt with “cluster-size sensitivity” problem by dynamically adjusting the condition value for the membership of each data point based on cluster size after the defuzzification step in each iterative cycle. However, the performance of csiFCM is sensitive to both the initial positions of cluster centers and the “distance” between adjacent clusters. In this paper, we present a cluster size insensitive integrity-based FCM method called siibFCM to improve the deficiency of csiFCM. The siibFCM method can determine the membership contribution of every data point to each individual cluster by considering cluster's integrity, which is a combination of compactness and purity. “Compactness” represents the distribution of data points within a cluster while “purity” represents how far a cluster is away from its adjacent cluster. We tested our siibFCM method and compared with the traditional FCM and csiFCM methods extensively by using artificially generated datasets with different shapes and data distributions, synthetic images, real images, and Escherichia coli dataset. Experimental results showed that the performance of siibFCM is superior to both traditional FCM and csiFCM in terms of the tolerance for “distance” between adjacent clusters and the flexibility of selecting initial cluster centers when dealing with datasets with unbalanced clusters.  相似文献   

17.
传统的模糊C均值聚类(FCM)算法须事先指出聚类数,该算法对孤立点和初始聚类敏感、易陷入局部最优,这些因素都将影响最终聚类结果的质量.针对这些缺陷,采用遗传算法和禁忌搜索的混合策略对FCM进行改进,该策略兼具了这两种算法的优势,改进后的算法自动生成最佳聚类数,优化初始聚类的选择,增强算法的爬山能力,有效改善了算法的性能.将改造前后的两种算法用于网络入侵检测实验,实验结果表明,改造后的算法产生的聚类质量明显优于原算法,用新算法对入侵检测建模,提高了模型的自适应性和实用性.  相似文献   

18.
关于模糊C-均值(FCM)聚类算法的改进   总被引:3,自引:0,他引:3  
针对模糊C-均值(FCM)聚类算法的容易收敛于局部极值的不足,提出了一种改进的模糊FCM聚类算法,此新算法在聚类中心选取和优化过程中进行了充分的考虑,是一种用于确定最佳聚类数的聚类算法,并且利用了分阶段思想,结合动态直接聚类算法和标准聚类算法,来尽量避免模糊C-均值(FCM)聚类算法的不足。新算法与传统(FCM)聚类算法方法相比,提高了算法的寻优能力,并且迭代次数更少,在准确度上也有较大的提高,具有很好的实际应用价值。  相似文献   

19.
相比于k-means算法,模糊C均值(FCM)通过引入模糊隶属度,考虑不同数据簇之间的相互作用,进而避免了聚类中心趋同性问题.然而模糊隶属度具有拖尾和翘尾的结构特征,因此使得FCM算法对噪声点和孤立点很敏感;此外,由于FCM算法倾向于将各数据簇均等分,因此算法对数据簇大小也很敏感,对非平衡数据簇聚类效果不佳.针对这些问题,本文提出了基于可靠性的鲁棒模糊聚类算法(RRFCM).该算法基于当前的聚类结果,对样本点进行可靠性分析,利用样本点的可靠性和局部近邻信息,突出不同数据簇之间的可分性,从而提高了算法对噪声的鲁棒性,并且降低了对非平衡数据簇大小的敏感性,得到了泛化性能更好的聚类结果.与相关算法进行对比,RRFCM算法在人造数据集,UCI真实数据集以及图像分割实验中均取得最优的结果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号