首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
数据挖掘中聚类算法比较研究   总被引:16,自引:0,他引:16  
聚类算法是数据挖掘的核心技术,本文结合提出了评价聚类算法好坏的5个标准,基于这5个标准,对数据挖掘中常用聚类算法作了比较分析,以便于人们更容易,更快捷地找到一种适用于特定问题的聚类算法。  相似文献   

2.
聚类分析技术是数据挖据中的一种重要技术。本文介绍了数据挖掘对聚类的典型要求和聚类方法的分类,研究分析了聚类的主要算法.并从多个方面对这些算法的性能进行比较。  相似文献   

3.
聚类分析技术是数据挖据中的一种重要技术.本文介绍了数据挖掘对聚类的典型要求和聚类方法的分类,研究分析了聚类的主要算法,并从多个方面对这些算法的性能进行比较.  相似文献   

4.
数据挖掘中聚类分析的技术方法   总被引:1,自引:0,他引:1  
数据挖掘是信息产业界近年来非常热门的研究方向,聚类分析是数据挖掘中的核心技术。对各种聚类算法进行了分类,对代表算法作了详细的分析,并对这些算法从多个方面进行了比较,从而为研究和在不同领域使用这些算法提供了参考。同时还阐述了聚类分析在数据挖掘中的应用。  相似文献   

5.
周妍  孔晓玲  张然 《福建电脑》2007,(8):9-10,21
聚类分析是数据挖掘的核心技术之一。本文介绍了当前最具代表性的聚类算法,分析它们各方面的特性,总结了聚类方法发展的趋势,并对聚类算法的研究提出了展望,便于研究者对已有算法应用与改进。  相似文献   

6.
数据挖掘常用聚类算法研究   总被引:2,自引:0,他引:2  
信息社会的发展,使数据量以前所未有的速度在增长,因此从海量数据中获取有用的知识和信息就变得越来越重要。数据挖掘是一种综合多领域知识而形成的数据分析技术,能够从大量数据中获取有价值的知识并为决策提供支持。聚类分析算法是数据挖掘中的一个核心内容,也是目前研究的一个热点。该文首先讲述了基于划分的聚类算法、基于分层的聚类算法、基于密度的聚类算法和基于网格的聚类算法等常用的聚类分析算法,并分析了其特点;然后通过举例详细描述了最近邻聚类算法的操作过程。聚类算法的总结,对聚类的研究和发展具有积极意义。  相似文献   

7.
信息社会的发展,使数据量以前所未有的速度在增长,因此从海量数据中获取有用的知识和信息就变得越来越重要。数据挖掘是一种综合多领域知识而形成的数据分析技术,能够从大量数据中获取有价值的知识并为决策提供支持。聚类分析算法是数据挖掘中的一个核心内容,也是目前研究的一个热点。该文首先讲述了基于划分的聚类算法、基于分层的聚类算法、基于密度的聚类算法和基于网格的聚类算法等常用的聚类分析算法,并分析了其特点;然后通过举例详细描述了最近邻聚类算法的操作过程。聚类算法的总结,对聚类的研究和发展具有积极意义。  相似文献   

8.
数据挖掘中聚类分析的技术方法   总被引:31,自引:21,他引:31  
数据挖掘是信息产业界近年来非常热门的研究方向,聚类分析是数据挖掘中的核心技术,本文对数据挖掘领域的聚类分析方法及代表算法进行分析,并从多个方面对这些算法性能进行比较,同时还对聚类分析在数据挖掘中的几个应用进行了阐述。  相似文献   

9.
数据挖掘中聚类算法研究   总被引:13,自引:7,他引:13  
陈良维 《微计算机信息》2006,22(21):209-211
聚类分析是数据挖掘领域中一个非常热门的研究课题,应用于各个领域的聚类算法非常多。本文介绍了衡量聚类算法性能的几个指标,对聚类分析进行了分类,列举了每类中典型的聚类算法,重点分析了神经网络中的自组织特征映射(SOM)算法。最后提及了聚类分析方法的应用范围以及今后需要解决的问题和发展方向。  相似文献   

10.
通常那些与数据集的一般行为或模型不一致的数据对象,可能包含某些重要的隐藏信息.在分析了基于单元网格的局部孤立因子的孤立点挖掘算法(GridLOF)的基础上,做出了相应的改进,提出了基于相邻网格密度因子的孤立点挖掘算法.  相似文献   

11.
一种增量式模糊聚类算法   总被引:5,自引:2,他引:5  
随着数据库中数据的迅速增长,新增数据对聚类结果有很大影响,而重新聚类势必严重浪费计算资源。本文提出了一种增量式的模糊聚类算法,合理地解决了新增数据对象的聚类及类属问题,并应用实例说明了新老算法具有同样的可靠性,但新算法大大提高了聚类分析与知识维护的效率。  相似文献   

12.
根据目前数据挖掘研究的现状,分析不确定数据的聚类挖掘算法。针对不确定数据聚类挖掘存在的问题,提出改进传统的数据挖掘算法来适合不确定数据的聚类挖掘或找出新的聚类挖掘算法,来解决不确定数据聚类挖掘问题的新思路。  相似文献   

13.
基于消息传递的并行聚类算法   总被引:2,自引:0,他引:2  
聚类(Clustering)是数据挖掘(Data Ming)中一项很重要的功能,本文提出用并行处理的方法,对k-means(k-平均值)算法进行改进,来说明并行算法可以在一定程度上提高聚类算法的性能.通过试验证明,当数据量较小时并行k-平均值可以很大程度上提高聚类算法的性能,但在数据量较大时效果较差.  相似文献   

14.
提出了一种两阶段的聚类方法:Hybrid。第一阶段产生大小相同的圆形原子聚类;第二阶段合并原子聚类形成任意形状和大小的聚合聚类。在扩展边界时,不但考虑原子聚类间的距离,还考虑原子聚类的密度相似度。这样可以更好地排除“噪音”的影响,得到内部结构更加趋同的聚合聚类。  相似文献   

15.
随着市场竞争的日益激烈,促销技术对于网络商城提升销售额至关重要。在对网络商城的访问日志和客户交易的历史数据分析基础上,采用K-均值聚类算法设计实现基于用户兴趣、基于用户消费偏好、基于用户价值的三种类型的促销策略,为企业提供可行的个性化促销决策支持模型。  相似文献   

16.
本文分析了基于关联规则的Apriori算法及其存在的缺陷,提出了一种将聚类分析和关联规则相结合的联合数据挖掘算法。在大项集数量相等时,联合挖掘算法明显优于Apriori算法。  相似文献   

17.
讨论入侵检测系统的基本技术,探讨基于智能技术的入侵检测方法,提出基于聚类算法的入侵检测系统。从实验结果来看,该入侵检测系统检测率高,误警率低,能有效满足用户的需求。  相似文献   

18.
数据挖掘已经被广泛的应用于商业银行,电信行业,心理学,生物医学等各行各业中。由于数据挖掘涉及的学科领域和方法很多,所以就有多种分类方法。这里介绍了聚类方法的要求以及常见的聚类算法。现在还有很多改进的聚类算法,对H-K算法做了主要介绍。  相似文献   

19.
数据挖掘已经被广泛的应用于商业银行,电信行业,心理学,生物医学等各行各业中。由于数据挖掘涉及的学科领域和方法很多,所以就有多种分类方法。这里介绍了聚类方法的要求以及常见的聚类算法。现在还有很多改进的聚类算法,对H—K算法做了主要介绍。  相似文献   

20.
侯天子  朱焱 《软件》2011,(11):25-28,31
在数据挖掘过程中,有很多挖掘算法试图使离群点的影响最小化,甚至是排除它们,然而这样可能丢失一些重要的信息。如今,在欺诈检测、网络入侵检测、故障诊断等问题中,离群点挖掘得到了越来越多的应用,离群点的发掘成为一个热门研究问题。I-Miner是一个企业级的数据挖掘工具,在本文中利用I-Miner软件对数据进行预处理,并用通过S语言拓展软件功能,编写了3种离群点算法并使用多个数据测试,对结果进行分析和对比研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号