首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
刘春晓  彭群生  杨颖振  王进  陈为 《软件学报》2008,19(Z1):202-212
提出一种由粗到精的透视畸变最小化算法,借助大位移视图来修补目标图像.它先对大位移视点图像进行透视畸变校正后再用来补全目标图像上的丢失信息区域.首先,在平面场景的假设下,大位移视点图像通过单应矩阵进行全局变形得到初始的畸变校正.然后,由误匹配识别机制检测出初始校正的大位移视图中的残余畸变.在颜色一致性和位移场光滑性的期望下,残余畸变通过基于能量优化的重叠像素对应算法得到进一步的松弛.最后,在极线几何以及像素邻域中的位移场光滑性和颜色一致性的约束下,信息丢失像素按照特别定义的修补优先级函数依次得到恢复.泊松图像融合算法被用于消除修补区域与其周围像素之间可能存在的鬼影现象从而得到无缝的修补效果.实验表明,该方法优于已有的图像修补算法,且能够修补含有复杂结构信息的较大受损区域.  相似文献   

2.
Despite their high popularity, common high dynamic range (HDR) methods are still limited in their practical applicability: They assume that the input images are perfectly aligned, which is often violated in practise. Our paper does not only free the user from this unrealistic limitation, but even turns the missing alignment into an advantage: By exploiting the multiple exposures, we can create a super‐resolution image. The alignment step is performed by a modern energy‐based optic flow approach that takes into account the varying exposure conditions. Moreover, it produces dense displacement fields with subpixel precision. As a consequence, our approach can handle arbitrary complex motion patterns, caused by severe camera shake and moving objects. Additionally, it benefits from several advantages over existing strategies: (i) It is robust under outliers (noise, occlusions, saturation problems) and allows for sharp discontinuities in the displacement field. (ii) The alignment step neither requires camera calibration nor knowledge of the exposure times. (iii) It can be efficiently implemented on CPU and GPU architectures. After the alignment is performed, we use the obtained subpixel accurate displacement fields as input for an energy‐based, joint super‐resolution and HDR (SR‐HDR) approach. It introduces robust data terms and anisotropic smoothness terms in the SR‐HDR literature. Our experiments with challenging real world data demonstrate that these novelties are pivotal for the favourable performance of our approach.  相似文献   

3.
This paper presents an algorithm for image completion based on the views of large displacement. A distinct from most existing image completion methods, which exploit only the target image’s own information to complete the damaged regions, our algorithm makes full use of a large displacement view (LDV) of the same scene, which introduces enough information to resolve the original ill-posed problem. To eliminate any perspective distortion during the warping of the LDV image, we first decompose the target image and the LDV one into several corresponding planar scene regions (PSRs) and transform the candidate PSRs on the LDV image onto their correspondences on the target image. Then using the transformed PSRs, we develop a new image repairing algorithm, coupled with graph cut based image stitching, texture synthesis based image inpainting, and image fusion based hole filling, to complete the missing regions seamlessly. Finally, the ghost effect between the repaired region and its surroundings is eliminated by Poisson image blending. Our algorithm effectively preserves the structure information on the missing area of the target image and produces a repaired result comparable to its original appearance. Experiments show the effectiveness of our method.  相似文献   

4.
Incorrectly setting the camera's exposure can have a significant negative effect on a photograph. Over‐exposing photographs causes pixels to exhibit unpleasant artifacts due to saturation of the sensor. Saturation removal typically involves user intervention to adjust the color values, which is tedious and time‐consuming. This paper discusses how saturation can be automatically removed without compromising the essential details of the image. Our method is based on a smoothness prior: neighboring pixels have similar channel ratios and color values. We demonstrate that high quality saturation‐free photos can be obtained from a simple but effective approach.  相似文献   

5.
We present a real‐time method for rendering a depth‐of‐field effect based on the per‐pixel layered splatting where source pixels are scattered on one of the three layers of a destination pixel. In addition, the missing information behind foreground objects is filled with an additional image of the areas occluded by nearer objects. The method creates high‐quality depth‐of‐field results even in the presence of partial occlusion, without major artifacts often present in the previous real‐time methods. The method can also be applied to simulating defocused highlights. The entire framework is accelerated by GPU, enabling real‐time post‐processing for both off‐line and interactive applications.  相似文献   

6.
This paper investigates a new approach for color transfer. Rather than transferring color from one image to another globally, we propose a system with a stroke‐based user interface to provide a direct indication mechanism. We further present a multiple local color transfer method. Through our system the user can easily enhance a defect (source) photo by referring to some other good quality (target) images by simply drawing some strokes. Then, the system will perform the multiple local color transfer automatically. The system consists of two major steps. First, the user draws some strokes on the source and target images to indicate corresponding regions and also the regions he or she wants to preserve. The regions to be preserved which will be masked out based on an improved graph cuts algorithm. Second, a multiple local color transfer method is presented to transfer the color from the target image(s) to the source image through gradient‐guided pixel‐wise color transfer functions. Finally, the defect (source) image can be enhanced seamlessly by multiple local color transfer based on some good quality (target) examples through an interactive and intuitive stroke‐based user interface.  相似文献   

7.
Compressive rendering refers to the process of reconstructing a full image from a small subset of the rendered pixels, thereby expediting the rendering task. In this paper, we empirically investigate three image order techniques for compressive rendering that are suitable for direct volume rendering. The first technique is based on the theory of compressed sensing and leverages the sparsity of the image gradient in the Fourier domain. The latter techniques exploit smoothness properties of the rendered image; the second technique recovers the missing pixels via a total variation minimization procedure while the third technique incorporates a smoothness prior in a variational reconstruction framework employing interpolating cubic B‐splines. We compare and contrast the three techniques in terms of quality, efficiency and sensitivity to the distribution of pixels. Our results show that smoothness‐based techniques significantly outperform techniques that are based on compressed sensing and are also robust in the presence of highly incomplete information. We achieve high quality recovery with as little as 20% of the pixels distributed uniformly in screen space.  相似文献   

8.
One of the most common tasks in image and video editing is the local adjustment of various properties (e.g., saturation or brightness) of regions within an image or video. Edge‐aware interpolation of user‐drawn scribbles offers a less effort‐intensive approach to this problem than traditional region selection and matting. However, the technique suffers a number of limitations, such as reduced performance in the presence of texture contrast, and the inability to handle fragmented appearances. We significantly improve the performance of edge‐aware interpolation for this problem by adding a boosting‐based classification step that learns to discriminate between the appearance of scribbled pixels. We show that this novel data term in combination with an existing edge‐aware optimization technique achieves substantially better results for the local image and video adjustment problem than edge‐aware interpolation techniques without classification, or related methods such as matting techniques or graph cut segmentation.  相似文献   

9.
Color transfer is an image processing technique which can produce a new image combining one source image's contents with another image's color style. While being able to produce convincing results, however, Reinhard et al.'s pioneering work has two problems—mixing up of colors in different regions and the fidelity problem. Many local color transfer algorithms have been proposed to resolve the first problem, but the second problem was paid few attentions. In this paper, a novel color transfer algorithm is presented to resolve the fidelity problem of color transfer in terms of scene details and colors. It's well known that human visual system is more sensitive to local intensity differences than to intensity itself. We thus consider that preserving the color gradient is necessary for scene fidelity. We formulate the color transfer problem as an optimization problem and solve it in two steps—histogram matching and a gradient‐preserving optimization. Following the idea of the fidelity in terms of color and gradient, we also propose a metric for objectively evaluating the performance of example‐based color transfer algorithms. The experimental results show the validity and high fidelity of our algorithm and that it can be used to deal with local color transfer.  相似文献   

10.
In this paper we show how to use two‐colored pixels as a generic tool for image processing. We apply two‐colored pixels as a basic operator as well as a supporting data structure for several image processing applications. Traditionally, images are represented by a regular grid of square pixels with one constant color each. In the two‐colored pixel representation, we reduce the image resolution and replace blocks of N × N pixels by one square that is split by a (feature) line into two regions with constant colors. We show how the conversion of standard mono‐colored pixel images into two‐colored pixel images can be computed efficiently by applying a hierarchical algorithm along with a CUDA‐based implementation. Two‐colored pixels overcome some of the limitations that classical pixel representations have, and their feature lines provide minimal geometric information about the underlying image region that can be effectively exploited for a number of applications. We show how to use two‐colored pixels as an interactive brush tool, achieving realtime performance for image abstraction and non‐photorealistic filtering. Additionally, we propose a realtime solution for image retargeting, defined as a linear minimization problem on a regular or even adaptive two‐colored pixel image. The concept of two‐colored pixels can be easily extended to a video volume, and we demonstrate this for the example of video retargeting.  相似文献   

11.
We present a new algorithm for efficient rendering of high‐quality depth‐of‐field (DoF) effects. We start with a single rasterized view (reference view) of the scene, and sample the light field by warping the reference view to nearby views. We implement the algorithm using NVIDIA's CUDA to achieve parallel processing, and exploit the atomic operations to resolve visibility when multiple pixels warp to the same image location. We then directly synthesize DoF effects from the sampled light field. To reduce aliasing artifacts, we propose an image‐space filtering technique that compensates for spatial undersampling using MIP mapping. The main advantages of our algorithm are its simplicity and generality. We demonstrate interactive rendering of DoF effects in several complex scenes. Compared to existing methods, ours does not require ray tracing and hence scales well with scene complexity.  相似文献   

12.
Pixel‐based visualizations have become popular, because they are capable of displaying large amounts of data and at the same time provide many details. However, pixel‐based visualizations are only effective if the data set is not sparse and the data distribution not random. Single pixels – no matter if they are in an empty area or in the middle of a large area of differently colored pixels – are perceptually difficult to discern and may therefore easily be missed. Furthermore, trends and interesting passages may be camouflaged in the sea of details. In this paper we compare different approaches for visual boosting in pixel‐based visualizations. Several boosting techniques such as halos, background coloring, distortion, and hatching are discussed and assessed with respect to their effectiveness in boosting single pixels, trends, and interesting passages. Application examples from three different domains (document analysis, genome analysis, and geospatial analysis) show the general applicability of the techniques and the derived guidelines.  相似文献   

13.
Color quantization replaces the color of each pixel with the closest representative color, and thus it makes the resulting image partitioned into uniformly-colored regions. As a consequence, continuous, detailed variations of color over the corresponding regions in the original image are lost through color quantization. In this paper, we present a novel blind scheme for restoring such variations from a color-quantized input image without a priori knowledge of the quantization method. Our scheme identifies which pairs of uniformly-colored regions in the input image should have continuous variations of color in the resulting image. Then, such regions are seamlessly stitched through optimization while preserving the closest representative colors. The user can optionally indicate which regions should be separated or stitched by scribbling constraint brushes across the regions. We demonstrate the effectiveness of our approach through diverse examples, such as photographs, cartoons, and artistic illustrations.  相似文献   

14.
Image completion techniques aim to complete selected regions of an image in a natural looking manner with little or no user interaction. Video Completion, the space–time equivalent of the image completion problem, inherits and extends both the difficulties and the solutions of the original 2D problem, but also imposes new ones—mainly temporal coherency and space complexity (videos contain significantly more information than images). Data‐driven approaches to completion have been established as a favoured choice, especially when large regions have to be filled. In this survey, we present the current state of the art in data‐driven video completion techniques. For unacquainted researchers, we aim to provide a broad yet easy to follow introduction to the subject (including an extensive review of the image completion foundations) and early guidance to the challenges ahead. For a versed reader, we offer a comprehensive review of the contemporary techniques, sectioned out by their approaches to key aspects of the problem.  相似文献   

15.
Image matting aims at extracting foreground elements from an image by means of color and opacity (alpha) estimation. While a lot of progress has been made in recent years on improving the accuracy of matting techniques, one common problem persisted: the low speed of matte computation. We present the first real‐time matting technique for natural images and videos. Our technique is based on the observation that, for small neighborhoods, pixels tend to share similar attributes. Therefore, independently treating each pixel in the unknown regions of a trimap results in a lot of redundant work. We show how this computation can be significantly and safely reduced by means of a careful selection of pairs of background and foreground samples. Our technique achieves speedups of up to two orders of magnitude compared to previous ones, while producing high‐quality alpha mattes. The quality of our results has been verified through an independent benchmark. The speed of our technique enables, for the first time, real‐time alpha matting of videos, and has the potential to enable a new class of exciting applications.  相似文献   

16.
Interactive computation of global illumination is a major challenge in current computer graphics research. Global illumination heavily affects the visual quality of generated images. It is therefore a key attribute for the perception of photo‐realistic images. Path tracing is able to simulate the physical behaviour of light using Monte Carlo techniques. However, the computational burden of this technique prohibits interactive rendering times on standard commodity hardware in high‐quality. Trying to solve the Monte Carlo integration with fewer samples results in characteristic noisy images. Global illumination filtering methods take advantage of the fact that the integral for neighbouring pixels may be very similar. Averaging samples of similar characteristics in screen‐space may approximate the correct integral, but may result in visible outliers. In this paper, we present a novel path tracing pipeline based on an edge‐aware filtering method for the indirect illumination which produces visually more pleasing results without noticeable outliers. The key idea is not to filter the noisy path traced images but to use it as a guidance to filter a second image composed from characteristic scene attributes that do not contain noise by default. We show that our approach better approximates the Monte Carlo integral compared to previous methods. Since the computation is carried out completely in screen‐space it is therefore applicable to fully dynamic scenes, arbitrary lighting and allows for high‐quality path tracing at interactive frame rates on commodity hardware.  相似文献   

17.
The goal of texture synthesis is to generate an arbitrarily large high‐quality texture from a small input sample. Generally, it is assumed that the input image is given as a flat, square piece of texture, thus it has to be carefully prepared from a picture taken under ideal conditions. Instead we would like to extract the input texture from any surface from within an arbitrary photograph. This introduces several challenges: Only parts of the photograph are covered with the texture of interest, perspective and scene geometry introduce distortions, and the texture is non‐uniformly sampled during the capture process. This breaks many of the assumptions used for synthesis. In this paper we combine a simple novel user interface with a generic per‐pixel synthesis algorithm to achieve high‐quality synthesis from a photograph. Our interface lets the user locally describe the geometry supporting the textures by combining rational Bézier patches. These are particularly well suited to describe curved surfaces under projection. Further, we extend per‐pixel synthesis to account for arbitrary texture sparsity and distortion, both in the input image and in the synthesis output. Applications range from synthesizing textures directly from photographs to high‐quality texture completion.  相似文献   

18.
Crowded motions refer to multiple objects moving around and interacting such as crowds, pedestrians and etc. We capture crowded scenes using a depth scanner at video frame rates. Thus, our input is a set of depth frames which sample the scene over time. Processing such data is challenging as it is highly unorganized, with large spatio‐temporal holes due to many occlusions. As no correspondence is given, locally tracking 3D points across frames is hard due to noise and missing regions. Furthermore global segmentation and motion completion in presence of large occlusions is ambiguous and hard to predict. Our algorithm utilizes Gestalt principles of common fate and good continuity to compute motion tracking and completion respectively. Our technique does not assume any pre‐given markers or motion template priors. Our key‐idea is to reduce the motion completion problem to a 1D curve fitting and matching problem which can be solved efficiently using a global optimization scheme. We demonstrate our segmentation and completion method on a variety of synthetic and real world crowded scanned scenes.  相似文献   

19.
Image Appearance Exploration by Model-Based Navigation   总被引:1,自引:0,他引:1  
Changing the appearance of an image can be a complex and non-intuitive task. Many times the target image colors and look are only known vaguely and many trials are needed to reach the desired results. Moreover, the effect of a specific change on an image is difficult to envision, since one must take into account spatial image considerations along with the color constraints. Tools provided today by image processing applications can become highly technical and non-intuitive including various gauges and knobs.
In this paper we introduce a method for changing image appearance by navigation, focusing on recoloring images. The user visually navigates a high dimensional space of possible color manipulations of an image. He can either explore in it for inspiration or refine his choices by navigating into sub regions of this space to a specific goal. This navigation is enabled by modeling the chroma channels of an image's colors using a Gaussian Mixture Model (GMM). The Gaussians model both color and spatial image coordinates, and provide a high dimensional parameterization space of a rich variety of color manipulations. The user's actions are translated into transformations of the parameters of the model, which recolor the image. This approach provides both inspiration and intuitive navigation in the complex space of image color manipulations.  相似文献   

20.
Content‐aware image retargeting is a technique that can flexibly display images with different aspect ratios and simultaneously preserve salient regions in images. Recently many image retargeting techniques have been proposed. To compare image quality by different retargeting methods fast and reliably, an objective metric simulating the human vision system (HVS) is presented in this paper. Different from traditional objective assessment methods that work in bottom‐up manner (i.e., assembling pixel‐level features in a local‐to‐global way), in this paper we propose to use a reverse order (top‐down manner) that organizes image features from global to local viewpoints, leading to a new objective assessment metric for retargeted images. A scale‐space matching method is designed to facilitate extraction of global geometric structures from retargeted images. By traversing the scale space from coarse to fine levels, local pixel correspondence is also established. The objective assessment metric is then based on both global geometric structures and local pixel correspondence. To evaluate color images, CIE L*a*b* color space is utilized. Experimental results are obtained to measure the performance of objective assessments with the proposed metric. The results show good consistency between the proposed objective metric and subjective assessment by human observers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号