首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
We propose an algorithm to compute interactive indirect illumination in dynamic scenes containing millions of triangles. It makes use of virtual point lights (VPL) to compute bounced illumination and a point‐based scene representation to query indirect visibility, similar to Imperfect Shadow Maps (ISM). To ensure a high fidelity of indirect light and shadows, our solution is made view‐adaptive by means of two orthogonal improvements: First, the VPL distribution is chosen to provide more detail, that is, more dense VPL sampling, where these contribute most to the current view. Second, the scene representation for indirect visibility is adapted to ensure geometric detail where it affects indirect shadows in the current view.  相似文献   

2.
We present a technique to efficiently importance sample distant, all‐frequency illumination in indoor scenes. Standard environment sampling is inefficient in such cases since the distant lighting is typically only visible through small openings (e.g. windows). This visibility is often addressed by manually placing a portal around each window to direct samples towards the openings; however, uniformly sampling the portal (its area or solid angle) disregards the possibly high frequency environment map. We propose a new portal importance sampling technique which takes into account both the environment map and its visibility through the portal, drawing samples proportional to the product of the two. To make this practical, we propose a novel, portal‐rectified reparametrization of the environment map with the key property that the visible region induced by a rectangular portal projects to an axis‐aligned rectangle. This allows us to sample according to the desired product distribution at an arbitrary shading location using a single (precomputed) summed‐area table per portal. Our technique is unbiased, relevant to many renderers, and can also be applied to rectangular light sources with directional emission profiles, enabling efficient rendering of non‐diffuse light sources with soft shadows.  相似文献   

3.
Interactive global illumination for fully deformable scenes with dynamic relighting is currently a very elusive goal in the area of realistic rendering. In this work we propose a system that is based on explicit visibility calculations and which is highly efficient and scalable. The rendering equation defines the light exchange between surfaces, which we approximate by subsampling. By utilizing the power of modern parallel GPUs using the CUDA framework we achieve interactive frame rates. Since we update the global illumination continuously in an asynchronous fashion, we maintain interactivity at all times for moderately complex scenes. We show that we can achieve higher frame rates for scenes with moving light sources, diffuse indirect illumination and dynamic geometry than other current methods, while maintaining a high image quality.  相似文献   

4.
This paper presents a novel approach to compute high quality and noise‐free soft shadows using exact visibility computations. This work relies on a theoretical framework allowing to group lines according to the geometry they intersect. From this study, we derive a new algorithm encoding lazily the visibility from a polygon. Contrary to previous works on from‐polygon visibility, our approach is very robust and straightforward to implement. We apply this algorithm to solve exactly and efficiently the visibility of an area light source from any point in a scene. As a consequence, results are not sensitive to noise, contrary to soft shadows methods based on area light source sampling. We demonstrate the reliability of our approach on different scenes and configurations.  相似文献   

5.
针对全局光照下的物理正确软影绘制较难满足交互性的难题,提出体现遮挡对象 空间位置远近关系的可变半影近似绘制算法。首先,以光源中心点为参照通过基于光线跟踪的 遮挡测试方法生成二值光源可见性图;并提出每个可视场景点对应自适应可见性空间平滑滤波 器宽度的确定方法;然后执行带掩模计算的自适应可见性滤波来获得从可见区到非可见区平滑 过渡的可见性因子;最后在光线跟踪流程中使用可见性因子动态调制相应可视场景点不考虑遮 挡的直接光照值,再加上间接光照得到高真实感软影。实验结果表明:该算法效果与物理正确 阴影在柔和度方面非常接近,容易绘制镜面反射间接光照,且测试场景的帧率在 30 帧/秒以上, 满足交互性要求。  相似文献   

6.
Rendering with Spherical Radiance Transport Maps   总被引:1,自引:0,他引:1  
  相似文献   

7.
Computation of illumination with soft‐shadows from all‐frequency environment maps, is a computationally expensive process. Use of pre‐computation add the limitation that receiver's geometry must be known in advance, since Irradiance computation takes into account the receiver's normal direction. We propose a method that using a new notion that we introduce, the Fullsphere Irradiance, allows us to accumulate the contribution from all light sources in the scene, on a possible receiver without knowing the receiver's geometry. This expensive computation is done in a pre‐processing step. The pre‐computed value is used at run time to compute the Irradiance arriving at any receiver with known direction. We show how using this technique we compute soft‐shadows and self‐shadows in real‐time from all‐frequency environments, with only modest memory requirements. A GPU implementation of the method, yields high frame rates even for complex scenes with dozens of dynamic occluders and receivers.  相似文献   

8.
We present a new, real‐time method for rendering soft shadows from large light sources or lighting environments on dynamic height fields. The method first computes a horizon map for a set of azimuthal directions. To reduce sampling, we compute a multi‐resolution pyramid on the height field. Coarser pyramid levels are indexed as the distance from caster to receiver increases. For every receiver point and every azimuthal direction, a smooth function of blocking angle in terms of log distance is reconstructed from a height difference sample at each pyramid level. This function's maximum approximates the horizon angle. We then sum visibility at each receiver point over wedges determined by successive pairs of horizon angles. Each wedge represents a linear transition in blocking angle over its azimuthal extent. It is precomputed in the order‐4 spherical harmonic (SH) basis, for a canonical azimuthal origin and fixed extent, resulting in a 2D table. The SH triple product of 16D vectors representing lighting, total visibility, and diffuse reflectance then yields the soft‐shadowed result. Two types of light sources are considered; both are distant and low‐frequency. Environmental lights require visibility sampling around the complete 360 ° azimuth, while key lights sample visibility within a partial swath. Restricting the swath concentrates samples where the light comes from (e.g. 3 azimuthal directions vs. 16‐32 for a full swath) and obtains sharper shadows. Our GPU implementation handles height fields up to 1024 × 1024 in real‐time. The computation is simple, local, and parallel, with performance independent of geometric content.  相似文献   

9.
At each shade point, the spherical visibility function encodes occlusion from surrounding geometry, in all directions. Computing this function is difficult and point‐sampling approaches, such as ray‐tracing or hardware shadow mapping, are traditionally used to efficiently approximate it. We propose a semi‐analytic solution to the problem where the spherical silhouette of the visibility is computed using a search over a 4D dual mesh of the scene. Once computed, we are able to semi‐analytically integrate visibility‐masked spherical functions along the visibility silhouette, instead of over the entire hemisphere. In this way, we avoid the artefacts that arise from using point‐sampling strategies to integrate visibility, a function with unbounded frequency content. We demonstrate our approach on several applications, including direct illumination from realistic lighting and computation of pre‐computed radiance transfer data. Additionally, we present a new frequency‐space method for exactly computing all‐frequency shadows on diffuse surfaces. Our results match ground truth computed using importance‐sampled stratified Monte Carlo ray‐tracing, with comparable performance on scenes with low‐to‐moderate geometric complexity.  相似文献   

10.
We present a hybrid approach to simulate global illumination and soft shadows at interactive frame rates. The strengths of hardware-accelerated GPU techniques are combined with CPU methods to achieve physically consistent results while maintaining reasonable performance. The process of image synthesis is subdivided into multiple passes accounting for the different illumination effects. While direct lighting is rendered efficiently by rasterization, soft shadows are simulated using a novel approach combining the speed of shadow mapping and the accuracy of visibility ray tracing. A shadow refinement mask is derived from the result of the direct lighting pass and from a small number of shadow maps to identify the penumbral region of an area light source. This region is accurately rendered by ray tracing. For diffuse indirect illumination, we introduce radiosity photons to profit from the flexibility of a point-based sampling while maintaining the benefits of interpolation over scattered data approximation or density estimation. A sparse sampling of the scene is generated by particle tracing. An area is approximated for each point sample to compute the radiosity solution using a relaxation approach. The indirect illumination is interpolated between neighboring radiosity photons, stored in a multidimensional search tree. We compare different neighborhood search algorithms in terms of image quality and performance. Our method yields interactive frame rates and results consistent with path tracing reference solutions.  相似文献   

11.
High-Quality Adaptive Soft Shadow Mapping   总被引:5,自引:0,他引:5  
The recent soft shadow mapping technique [ [GBP06] ] allows the rendering in real-time of convincing soft shadows on complex and dynamic scenes using a single shadow map. While attractive, this method suffers from shadow overestimation and becomes both expensive and approximate when dealing with large penumbrae. This paper proposes new solutions removing these limitations and hence providing an efficient and practical technique for soft shadow generation. First, we propose a new visibility computation procedure based on the detection of occluder contours, that is more accurate and faster while reducing aliasing. Secondly, we present a shadow map multi-resolution strategy keeping the computation complexity almost independent on the light size while maintaining high-quality rendering. Finally, we propose a view-dependent adaptive strategy, that automatically reduces the screen resolution in the region of large penumbrae, thus allowing us to keep very high frame rates in any situation.  相似文献   

12.
We present a real-time method for rendering global illumination effects from large area and environmental lights on dynamic height fields. In contrast to previous work, our method handles inter-reflections (indirect lighting) and non-diffuse surfaces. To reduce sampling, we construct one multi-resolution pyramid for height variation to compute direct shadows, and another pyramid for each indirect bounce of incident radiance to compute inter-reflections. The basic principle is to sample the points blocking direct light, or shedding indirect light, from coarser levels of the pyramid the farther away they are from a given receiver point. We unify the representation of visibility and indirect radiance at discrete azimuthal directions (i.e., as a function of a single elevation angle) using the concept of a "casting set" of visible points along this direction whose contributions are collected in the basis of normalized Legendre polynomials. This analytic representation is compact, requires no precomputation, and allows efficient integration to produce the spherical visibility and indirect radiance signals. Sub-sampling visibility and indirect radiance, while shading with full-resolution surface normals, further increases performance without introducing noticeable artifacts. Our method renders 512×512 height fields (> 500K triangles) at 36Hz.  相似文献   

13.
We introduce image-space radiosity and a hierarchical variant as a method for interactively approximating diffuse indirect illumination in fully dynamic scenes. As oft observed, diffuse indirect illumination contains mainly low-frequency details that do not require independent computations at every pixel. Prior work leverages this to reduce computation costs by clustering and caching samples in world or object space. This often involves scene preprocessing, complex data structures for caching, or wasted computations outside the view frustum. We instead propose clustering computations in image space, allowing the use of cheap hardware mipmapping and implicit quadtrees to allow coarser illumination computations. We build on a recently introduced multiresolution splatting technique combined with an image-space lightcut algorithm to intelligently choose virtual point lights for an interactive, one-bounce instant radiosity solution. Intelligently selecting point lights from our reflective shadow map enables temporally coherent illumination similar to results using more than 4096 regularly-sampled VPLs.  相似文献   

14.
This paper presents a new approach to compute plausible soft shadows for complex dynamic scenes and rectangular light sources. We estimate the occlusion at each point of the scene using prefiltered occlusion textures, which dynamically approximate the scene geometry. The algorithm is fast and its performance independent of the light's size. Being image‐based, it is mostly independent of the scene complexity and type. No a priori information is needed, and there is no caster/receiver separation. This makes the method appealing and easy to use.  相似文献   

15.
We present a soft shadow rendering algorithm that is general, efficient and accurate. The algorithm supports fully dynamic scenes, with moving and deforming blockers and receivers, and with changing area light source parameters. For each output image pixel, the algorithm computes a tight but conservative approximation of the set of triangles that block the light source as seen from the pixel sample. The set of potentially blocking triangles allows estimating visibility between light points and pixel samples accurately and efficiently. As the light source size decreases to a point, our algorithm converges to rendering pixel accurate hard shadows.  相似文献   

16.
17.
In this paper, we extend the concept of pre‐filtered shadow mapping to stochastic rasterization, enabling real‐time rendering of soft shadows from planar area lights. Most existing soft shadow mapping methods lose important visibility information by relying on pinhole renderings from an area light source, providing plausible results only for small light sources. Since we sample the entire 4D shadow light field stochastically, we are able to closely approximate shadows of large area lights as well. In order to efficiently reconstruct smooth shadows from this sparse data, we exploit the analogy of soft shadow computation to rendering defocus blur, and introduce a multiplane pre‐filtering algorithm. We demonstrate how existing pre‐filterable approximations of the visibility function, such as variance shadow mapping, can be extended to four dimensions within our framework.  相似文献   

18.
Distribution effects such as diffuse global illumination, soft shadows and depth of field, are most accurately rendered using Monte Carlo ray or path tracing. However, physically accurate algorithms can take hours to converge to a noise‐free image. A recent body of work has begun to bridge this gap, showing that both individual and multiple effects can be achieved accurately and efficiently. These methods use sparse sampling, GPU raytracers, and adaptive filtering for reconstruction. They are based on a Fourier analysis, which models distribution effects as a wedge in the frequency domain. The wedge can be approximated as a single large axis‐aligned filter, which is fast but retains a large area outside the wedge, and therefore requires a higher sampling rate; or a tighter sheared filter, which is slow to compute. The state‐of‐the‐art fast sheared filtering method combines low sampling rate and efficient filtering, but has been demonstrated for individual distribution effects only, and is limited by high‐dimensional data storage and processing. We present a novel filter for efficient rendering of combined effects, involving soft shadows and depth of field, with global (diffuse indirect) illumination. We approximate the wedge spectrum with multiple axis‐aligned filters, marrying the speed of axis‐aligned filtering with an even more accurate (compact and tighter) representation than sheared filtering. We demonstrate rendering of single effects at comparable sampling and frame‐rates to fast sheared filtering. Our main practical contribution is in rendering multiple distribution effects, which have not even been demonstrated accurately with sheared filtering. For this case, we present an average speedup of 6× compared with previous axis‐aligned filtering methods.  相似文献   

19.
We present an approach for editing shadows in all‐frequency lighting environments. To support artistic control, we propose to decouple shadowing from lighting and focus on providing intuitive controls to edit the former. To accomplish this task, we precompute and store scene visibility information separately from lighting and BRDFs and allow artists to edit visibility directly, by providing operations to select shadows and edit their shape. To facilitate a wider range of editing operations, we generalize visibility from binary to three‐channel oating point quantities and introduce a novel shadow representation based on computation of visibility ratios between the original render and the edited one. We demonstrate our results for diffuse and glossy surfaces, still scenes and animations.  相似文献   

20.
The ability to interactively render dynamic scenes with global illumination is one of the main challenges in computer graphics. The improvement in performance of interactive ray tracing brought about by significant advances in hardware and careful exploitation of coherence has rendered the potential of interactive global illumination a reality. However, the simulation of complex light transport phenomena, such as diffuse interreflections, is still quite costly to compute in real time. In this paper we present a caching scheme, termed Instant Caching, based on a combination of irradiance caching and instant radiosity. By reutilising calculations from neighbouring computations this results in a speedup over previous instant radiosity‐based approaches. Additionally, temporal coherence is exploited by identifying which computations have been invalidated due to geometric transformations and updating only those paths. The exploitation of spatial and temporal coherence allows us to achieve superior frame rates for interactive global illumination within dynamic scenes, without any precomputation or quality loss when compared to previous methods; handling of lighting and material changes are also demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号