首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Existing real‐time volume rendering techniques which support global illumination are limited in modeling distinct realistic appearances for classified volume data, which is a desired capability in many fields of study for illustration and education. Directly extending the emission‐absorption volume integral with heterogeneous material shading becomes unaffordable for real‐time applications because the high‐frequency view‐dependent global lighting needs to be evaluated per sample along the volume integral. In this paper, we present a decoupled shading algorithm for multi‐material volume rendering that separates global incident lighting evaluation from per‐sample material shading under multiple light sources. We show how the incident lighting calculation can be optimized through a sparse volume integration method. The quality, performance and usefulness of our new multi‐material volume rendering method is demonstrated through several examples.  相似文献   

2.
Particle‐based simulation techniques, like the discrete element method or molecular dynamics, are widely used in many research fields. In real‐time explorative visualization it is common to render the resulting data using opaque spherical glyphs with local lighting only. Due to massive overlaps, however, inner structures of the data are often occluded rendering visual analysis impossible. Furthermore, local lighting is not sufficient as several important features like complex shapes, holes, rifts or filaments cannot be perceived well. To address both problems we present a new technique that jointly supports transparency and ambient occlusion in a consistent illumination model. Our approach is based on the emission‐absorption model of volume rendering. We provide analytic solutions to the volume rendering integral for several density distributions within a spherical glyph. Compared to constant transparency our approach preserves the three‐dimensional impression of the glyphs much better. We approximate ambient illumination with a fast hierarchical voxel cone‐tracing approach, which builds on a new real‐time voxelization of the particle data. Our implementation achieves interactive frame rates for millions of static or dynamic particles without any preprocessing. We illustrate the merits of our method on real‐world data sets gaining several new insights.  相似文献   

3.
We propose a novel rendering method which supports interactive BRDF editing as well as relighting on a 3D scene. For interactive BRDF editing, we linearize an analytic BRDF model with basis BRDFs obtained from a principal component analysis. For each basis BRDF, the radiance transfer is precomputed and stored in vector form. In rendering time, illumination of a point is computed by multiplying the radiance transfer vectors of the basis BRDFs by the incoming radiance from gather samples and then linearly combining the results weighted by user‐controlled parameters. To improve the level of accuracy, a set of sub‐area samples associated with a gather sample refines the glossy reflection of the geometric details without increasing the precomputation time. We demonstrate this program with a number of examples to verify the real‐time performance of relighting and BRDF editing on 3D scenes with complex lighting and geometry.  相似文献   

4.
Photo‐realistic rendering of virtual objects into real scenes is one of the most important research problems in computer graphics. Methods for capture and rendering of mixed reality scenes are driven by a large number of applications, ranging from augmented reality to visual effects and product visualization. Recent developments in computer graphics, computer vision, and imaging technology have enabled a wide range of new mixed reality techniques including methods for advanced image based lighting, capturing spatially varying lighting conditions, and algorithms for seamlessly rendering virtual objects directly into photographs without explicit measurements of the scene lighting. This report gives an overview of the state‐of‐the‐art in this field, and presents a categorization and comparison of current methods. Our in‐depth survey provides a tool for understanding the advantages and disadvantages of each method, and gives an overview of which technique is best suited to a specific problem.  相似文献   

5.
This paper aims at rendering interactive visual effects inherent to complex interactions between trees and rain in real‐time in order to increase the realism of natural rainy scenes. Such a complex phenomenon involves a great number of physical processes influenced by various interlinked factors and its rendering represents a thorough challenge in Computer Graphics. We approach this problem by introducing an original method to render drops dripping from leaves after interception of raindrops by foliage. Our method introduces a new hydrological model representing interactions between rain and foliage through a phenomenological approach. Our model reduces the complexity of the phenomenon by representing multiple dripping drops with a new fully functional form evaluated per‐pixel on‐the‐fly and providing improved control over density and physical properties. Furthermore, an efficient real‐time rendering scheme, taking full advantage of latest GPU hardware capabilities, allows the rendering of a large number of dripping drops even for complex scenes.  相似文献   

6.
The accurate generation of soft shadows is a particularly computationally intensive task. In order to reduce rendering time, most real‐time and offline applications decorrelate the generation of shadows from the computation of lighting. In addition to such approximations, they generate shadows using some restrictive assumptions only correct in very specific cases, leading to penumbra over‐estimation or light‐leaking artifacts. In this paper we present an algorithm that produces soft shadows without exhibiting the previous drawbacks. Using a new efficient evaluation of the number of occluders between two points (i.e. the depth complexity) we either modulate direct lighting or numerically solve the rendering equation for direct illumination. Our approach approximates shadows cast by semi‐opaque occluders and naturally handles area lights with spatially varying luminance. Furthermore, depending on the desired performance and quality, the resulting shadows are either very close to, or as accurate as, a ray‐traced reference. As a result, the presented method is well suited to many domains, ranging from quality‐sensitive to performance‐critical applications.  相似文献   

7.
Structured light scanning is ubiquituous in 3D acquisition. It is capable of capturing high geometric detail at a low cost under a variety of challenging scene conditions. Recent methods have demonstrated robustness in the presence of artifacts due to global illumination, such as inter‐reflections and sub‐surface scattering, as well as imperfections caused by projector defocus. For comparing approaches, however, the quantitative evaluation of structured lighting schemes is hindered by the challenges in obtaining ground truth data, resulting in a poor understanding for these methods across a wide range of shapes, materials, and lighting configurations. In this paper, we present a benchmark to study the performance of structured lighting algorithms in the presence of errors caused due to the above properties of the scene. In order to do this, we construct a synthetic structured lighting scanner that uses advanced physically based rendering techniques to simulate the point cloud acquisition process. We show that, under conditions similar to that of a real scanner, our synthetic scanner replicates the same artifacts found in the output of a real scanner. Using this synthetic scanner, we perform a quantitative evaluation of four different structured lighting techniques – gray‐code patterns, micro‐phase shifting, ensemble codes, and unstructured light scanning. The evaluation, performed on a variety of scenes, demonstrate that no one method is capable of adequately handling all sources of error – each method is appropriate for addressing distinct sources of error.  相似文献   

8.
Mimicking the appearance of the real world is a longstanding goal of computer graphics, with several important applications in the feature film, architecture and medical industries. Images with well‐designed shading are an important tool for conveying information about the world, be it the shape and function of a computer‐aided design (CAD) model, or the mood of a movie sequence. However, authoring this content is often a tedious task, even if undertaken by groups of highly trained and experienced artists. Unsurprisingly, numerous methods to facilitate and accelerate this appearance editing task have been proposed, enabling the editing of scene objects' appearances, lighting and materials, as well as entailing the introduction of new interaction paradigms and specialized preview rendering techniques. In this review, we provide a comprehensive survey of artistic appearance, lighting and material editing approaches. We organize this complex and active research area in a structure tailored to academic researchers, graduate students and industry professionals alike. In addition to editing approaches, we discuss how user interaction paradigms and rendering back ends combine to form usable systems for appearance editing. We conclude with a discussion of open problems and challenges to motivate and guide future research.  相似文献   

9.
We propose an analysis of numerical integration based on sampling theory, whereby the integration error caused by aliasing is suppressed by pre‐filtering. We derive a pre‐filter for evaluating the illumination integral yielding filtered importance sampling, a simple GPU‐based rendering algorithm for image‐based lighting. Furthermore, we extend the algorithm with real‐time visibility computation. Free from any pre‐computation, the algorithm supports fully dynamic scenes and, above all, is simple to implement.  相似文献   

10.
In this paper, we present an inexpensive approach to create highly detailed reconstructions of the landscape surrounding a road. Our method is based on a space‐efficient semi‐procedural representation of the terrain and vegetation supporting high‐quality real‐time rendering not only for aerial views but also at road level. We can integrate photographs along selected road stretches. We merge the point clouds extracted from these photographs with a low‐resolution digital terrain model through a novel algorithm which is robust against noise and missing data. We pre‐compute plausible locations for trees through an algorithm which takes into account perceptual cues. At runtime we render the reconstructed terrain along with plants generated procedurally according to pre‐computed parameters. Our rendering algorithm ensures visual consistency with aerial imagery and thus it can be integrated seamlessly with current virtual globes.  相似文献   

11.
Stereo Light Probe   总被引:1,自引:0,他引:1  
In this paper we present a practical, simple and robust method to acquire the spatially‐varying illumination of a real‐world scene. The basic idea of the proposed method is to acquire the radiance distribution of the scene using high‐dynamic range images of two reflective balls. The use of two light probes instead of a single one allows to estimate, not only the direction and intensity of the light sources, but also the actual position in space of the light sources. To robustly achieve this goal we first rectify the two input spherical images, then, using a region‐based stereo matching algorithm, we establish correspondences and compute the position of each light. The radiance distribution so obtained can be used for augmented reality applications, photo‐realistic rendering and accurate reflectance properties estimation. The accuracy and the effectiveness of the method have been tested by measuring the computed light position and rendering synthetic version of a real object in the same scene. The comparison with standard method that uses a simple spherical lighting environment is also shown.  相似文献   

12.
Photorealistic rendering of real world environments is important in a range of different areas; including Visual Special effects, Interior/Exterior Modelling, Architectural Modelling, Cultural Heritage, Computer Games and Automotive Design. Currently, rendering systems are able to produce photorealistic simulations of the appearance of many real‐world materials. In the real world, viewer perception of objects depends on the lighting and object/material/surface characteristics, the way a surface interacts with the light and on how the light is reflected, scattered, absorbed by the surface and the impact these characteristics have on material appearance. In order to re‐produce this, it is necessary to understand how materials interact with light. Thus the representation and acquisition of material models has become such an active research area. This survey of the state‐of‐the‐art of BRDF Representation and Acquisition presents an overview of BRDF (Bidirectional Reflectance Distribution Function) models used to represent surface/material reflection characteristics, and describes current acquisition methods for the capture and rendering of photorealistic materials.  相似文献   

13.
Iridescence is a natural phenomenon that is perceived as gradual color changes, depending on the view and illumination direction. Prominent examples are the colors seen in oil films and soap bubbles. Unfortunately, iridescent effects are particularly difficult to recreate in real‐time computer graphics. We present a high‐quality real‐time method for rendering iridescent effects under image‐based lighting. Previous methods model dielectric thin‐films of varying thickness on top of an arbitrary micro‐facet model with a conducting or dielectric base material, and evaluate the resulting reflectance term, responsible for the iridescent effects, only for a single direction when using real‐time image‐based lighting. This leads to bright halos at grazing angles and over‐saturated colors on rough surfaces, which causes an unnatural appearance that is not observed in ground truth data. We address this problem by taking the distribution of light directions, given by the environment map and surface roughness, into account when evaluating the reflectance term. In particular, our approach prefilters the first and second moments of the light direction, which are used to evaluate a filtered version of the reflectance term. We show that the visual quality of our approach is superior to the ones previously achieved, while having only a small negative impact on performance.  相似文献   

14.
In this survey we review, classify and compare existing approaches for real‐time crowd rendering. We first overview character animation techniques, as they are highly tied to crowd rendering performance, and then we analyze the state of the art in crowd rendering. We discuss different representations for level‐of‐detail (LoD) rendering of animated characters, including polygon‐based, point‐based, and image‐based techniques, and review different criteria for runtime LoD selection. Besides LoD approaches, we review classic acceleration schemes, such as frustum culling and occlusion culling, and describe how they can be adapted to handle crowds of animated characters. We also discuss specific acceleration techniques for crowd rendering, such as primitive pseudo‐instancing, palette skinning, and dynamic key‐pose caching, which benefit from current graphics hardware. We also address other factors affecting performance and realism of crowds such as lighting, shadowing, clothing and variability. Finally we provide an exhaustive comparison of the most relevant approaches in the field.  相似文献   

15.
We present novel methods to enhance Computer Generated Holography (CGH) by introducing a complex‐valued wave‐based occlusion handling method. This offers a very intuitive and efficient interface to introduce optical elements featuring physically‐based light interaction exhibiting depth‐of‐field, diffraction, and glare effects. Fur‐thermore, an efficient and flexible evaluation of lit objects on a full‐parallax hologram leads to more convincing images. Previous illumination methods for CGH are not able to change the illumination settings of rendered holo‐grams. In this paper we propose a novel method for real‐time lighting of rendered holograms in order to change the appearance of a previously captured holographic scene. These functionalities are features of a bigger wave‐based rendering framework which can be combined with 2D framebuffer graphics. We present an algorithm which uses graphics hardware to accelerate the rendering.  相似文献   

16.
This paper presents a realistic digital oil painting system, specifically targeted at the real‐time performance on highly resource‐constrained portable hardware such as tablets and iPads. To effectively use the limited computing power, we develop an efficient adaptation of the shallow water equations that models all the characteristic properties of oil paint. The pigments are stored in a multi‐layered structure to model the peculiar nature of pigment mixing in oil paint. The user experience ranges from thick shape‐retaining strokes to runny diluted paint that reacts naturally to the gravity set by tablet orientation. Finally, the paint is rendered in real time using a combination of carefully chosen efficient rendering techniques. The virtual lighting adapts to the tablet orientation, or alternatively, the front‐facing camera captures the lighting environment, which leads to a truly immersive user experience. Our proposed features are evaluated via a user study. In our experience, our system enables artists to quickly try out ideas and compositions anywhere when inspiration strikes, in a truly ubiquitous way. They do not need to carry expensive and messy oil paint supplies.  相似文献   

17.
基于图像的光照模型研究综述   总被引:9,自引:1,他引:8  
沈沉  沈向洋  马颂德 《计算机学报》2000,23(12):1261-1269
从传统图形学的绘制技术与基于图像的绘制技术相结合的角度出发,以全光函数这个基于图像的绘制技术的理论基础为核心,概括性地提出基于图像的光照研究的基本任务实际上是对全光函数的采样、重建、合成和重采样的过程,并进一步地指出,基于图像的光照研究的重要意义在于扩展了原有基于图像的绘制技术中只能改变视点位置和视线方向的限制,使之可以通过改变场景本身的组成成分产生出更加丰富的光照效果。同时,该文综述性地分析了近期内有关基于图像的光照问题的部分研究工作,并从如何改变场景光照条件的角度出发,按照所使用的光照模型的不同,将这些方法分成三大类,即利用传统光照模型的方法、利用基于图像的光照模型的方法以及无需光照模型的方法。并从这个分类框架出发,进一步分析指出,利用基于图像的光照模型的方法将是未来研究的重点,并沿着这一方向尝试性地提出了一种新的模型。  相似文献   

18.
We present a real‐time rendering algorithm for inhomogeneous, single scattering media, where all‐frequency shading effects such as glows, light shafts, and volumetric shadows can all be captured. The algorithm first computes source radiance at a small number of sample points in the medium, then interpolates these values at other points in the volume using a gradient‐based scheme that is efficiently applied by sample splatting. The sample points are dynamically determined based on a recursive sample splitting procedure that adapts the number and locations of sample points for accurate and efficient reproduction of shading variations in the medium. The entire pipeline can be easily implemented on the GPU to achieve real‐time performance for dynamic lighting and scenes. Rendering results of our method are shown to be comparable to those from ray tracing.  相似文献   

19.
We present a real‐time algorithm for rendering translucent objects of arbitrary shapes. We approximate the scattering of light inside the objects using the diffusion equation, which we solve on‐the‐fly using the GPU. Our algorithm is general enough to handle arbitrary geometry, heterogeneous materials, deformable objects and modifications of lighting, all in real‐time. In a pre‐processing step, we discretize the object into a regular 4‐connected structure (QuadGraph). Due to its regular connectivity, this structure is easily packed into a texture and stored on the GPU. At runtime, we use the QuadGraph stored on the GPU to solve the diffusion equation, in real‐time, taking into account the varying input conditions: Incoming light, object material and geometry. We handle deformable objects, provided the deformation does not change the topological structure of the objects.  相似文献   

20.
Illumination is one of the key components in the creation of realistic renderings of scenes containing virtual objects. In this paper, we present a set of novel algorithms and data structures for visualization, processing and rendering with real world lighting conditions captured using High Dynamic Range (HDR) video. The presented algorithms enable rapid construction of general and editable representations of the lighting environment, as well as extraction and fitting of sampled reflectance to parametric BRDF models. For efficient representation and rendering of the sampled lighting environment function, we consider an adaptive (2D/4D) data structure for storage of light field data on proxy geometry describing the scene. To demonstrate the usefulness of the algorithms, they are presented in the context of a fully integrated framework for spatially varying image based lighting. We show reconstructions of example scenes and resulting production quality renderings of virtual furniture with spatially varying real world illumination including occlusions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号