首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 156 毫秒
1.
徐苏平  杨习贝  祁云嵩 《计算机应用》2015,35(11):3218-3221
在多标记学习中,由于不同的标记可能会带有自身的一些特性,所以目前已经出现了基于标记类属属性的多标记学习算法LIFT.然而,类属属性的构建可能会增加属性向量的维度,致使属性空间存在冗余信息.为此,借助模糊粗糙集提出了一种能够进行类属属性约简的多标记学习算法FRS-LIFT,其包含4个步骤:类属属性构建、属性维度约简、分类模型训练和未知样本预测.在5个多标记数据集上的实验结果表明,该算法与LIFT算法相比,不仅能够降低类属属性维数,而且在5种多标记评价指标上均具有较好的实验效果.  相似文献   

2.
牟甲鹏  蔡剑  余孟池  徐建 《计算机应用研究》2020,37(9):2656-2658,2673
多标签学习中一个样本可同时属于多个类别标签,每个标签都可能拥有反映该标签特定特点的特征,即类属属性,目前已经出现了基于类属属性的多标签分类算法LIFT。针对LIFT算法中未考虑标签之间相互关系的问题,提出一种基于标签相关性的类属属性多标签分类算法CLLIFT。该算法使用标签距离度量标签之间的相关性,通过在类属属性空间附加相关标签的方式完成标签相关性的引入,以达到提升分类性能的目的。在四个多标签数据集上的实验结果表明,所提算法与LIFT算法相比在多个多标签评价指标上平均提升21.1%。  相似文献   

3.
在多标记分类中,某个标记可能只由其自身的某些特有属性决定,这些特定属性称之为类属属性.利用类属属性进行多标记分类,可以有效避免某些无用特征影响构建分类模型的性能.然而类属属性算法仅从标记角度去提取重要特征,而忽略了从特征角度去提取重要标记.事实上,如果能从特征角度提前关注某些标记,更容易获取这些标记的特有属性.基于此,提出了一种新型类属属性学习的多标记分类算法,将从特征层面提取重要标记与从标记层面提取重要特征进行双向联合学习.首先,为了保证模型求解速度与精度都较为合理,采用极限学习机构建学习模型.随后,将弹性网络正则化理论添加到极限学习机损失函数中,使用互信息构建特征标记相关性矩阵作为L 2正则化项,而L 1正则化项即提取类属属性.该学习模型改进了类属属性在多标记学习中的不足,通过在标准多标记数据集上与多个先进算法对比,实验结果表明了所提模型的合理性和有效性.  相似文献   

4.
张志浩  林耀进  卢舜  郭晨  王晨曦 《计算机应用》2021,41(10):2849-2857
多标记特征选择已在图像分类、疾病诊断等领域得到广泛应用;然而,现实中数据的标记空间往往存在部分标记缺失的问题,这破坏了标记间的结构性和关联性,使得学习算法难以准确地选择重要特征。针对此问题,提出一种缺失标记下基于类属属性的多标记特征选择(MFSLML)算法。首先,通过利用稀疏学习方法获取每个类标记的类属属性;同时基于线性回归模型构建类属属性与标记的映射关系,以用于恢复缺失标记;最后,选取7组数据集以及4个评价指标进行实验。实验结果表明:相比基于最大依赖度和最小冗余度的多标记特征选择算法(MDMR)和基于特征交互的多标记特征选择算法(MFML)等一些先进的多标记特征选择算法,MFSLML在平均查准率指标上能够提升4.61~5.5个百分点,由此可见MFSLML具有更优的分类性能。  相似文献   

5.
目前大部分已经存在的多标记学习算法在模型训练过程中所采用的共同策略是基于相同的标记属性特征集合预测所有标记类别.但这种思路并未对每个标记所独有的标记特征进行考虑.在标记空间中,这种标记特定的属性特征对于区分其它类别标记和描述自身特性是非常有帮助的信息.针对这一问题,本文提出了基于标记特定特征和相关性的ML-KNN改进算法MLF-KNN.不同于之前的多标记算法直接在原始训练数据集上进行操作,而是首先对训练数据集进行预处理,为每一种标记类别构造其特征属性,在得到的标记属性空间上进一步构造L1-范数并进行优化从而引入标记之间的相关性,最后使用改进后的ML-KNN算法进行预测分类.实验结果表明,在公开数据集image和yeast上,本文提出的算法MLF-KNN分类性能优于ML-KNN,同时与其它另外3种多标记学习算法相比也表现出一定的优越性.  相似文献   

6.
在多标记学习系统中,每个样本同时与多个类别标记相关,却均由一个属性特征向量描述。大部分已有的多标记分类算法采用的共同策略是使用相同的属性特征集合预测所有的类别标记,但它并非最佳选择,原因在于每个标记可能与其自身独有的属性特征相关性最大。针对这一问题,提出了融合标记独有属性特征的k近邻多标记分类算法—IML-kNN。首先对多标记数据的特征向量进行预处理,分别为每类标记构造对该类标记最具有判别能力的属性特征;然后基于得到的属性特征使用改进后的ML-kNN算法进行分类。实验结果表明,IML-kNN算法在yeast和image数据集上的性能明显优于ML-kNN算法以及其他3种常用的多标记分类算法。  相似文献   

7.
多示例多标记学习(Multi-Instance Multi-Label,MIML)是一种新的机器学习框架,基于该框架上的样本由多个示例组成并且与多个类别相关联,该框架因其对多义性对象具有出色的表达能力,已成为机器学习界研究的热点.解决MIML分类问题的最直接的思路是采用退化策略,通过向多示例学习或多标记学习的退化,将MIML框架下的分类问题简化为一系列的二类分类问题进行求解.但是在退化过程中会丢失标记之间的关联信息,降低分类的准确率.针对此问题,本文提出了MIMLSVM-LOC算法,该算法将改进的MIMLSVM算法与一种局部标记相关性的方法ML-LOC相结合,在训练过程中结合标记之间的关联信息进行分类.算法首先对MIMLSVM算法中的K-medoids聚类算法进行改进,采用的混合Hausdorff距离,将每一个示例包转化为一个示例,将MIML问题进行了退化.然后采用单示例多标记的算法ML-LOC算法继续以后的分类工作.在实验中,通过与其他多示例多标记算法对比,得出本文提出的算法取得了比其他分类算法更优的分类效果.  相似文献   

8.
多示例多标记学习是用多个示例来表示一个对象,同时该对象与多个类别标记相关联的新型机器学习框架.设计多示例多标记算法的一种方法是使用退化策略将其转化为多示例学习或者是多标记学习,最后退化为传统监督学习,然后使用某种算法进行训练和建模,但是在退化过程中会有信息丢失,从而影响到分类准确率.MIMLSVM算法是以多标记学习为桥梁,将多示例多标记学习问题退化为传统监督学习问题求解,但是该算法在退化过程中没有考虑标记之间的相关信息,本文利用一种既考虑到全局相关性又考虑到局部相关性的多标记算法GLOCAL来对MIMLSVM进行改进,实验结果显示,改进的算法取得了良好的分类效果.  相似文献   

9.
郝宁  夏士雄  牛强  赵志军 《计算机应用》2015,35(11):3122-3125
针对多示例多标记学习算法MIMLBoost中退化过程造成的类别不平衡问题,运用人工降采样思想,引入类别重要度,提出一种改进的基于类别标记评估的退化方法.该方法通过对示例空间中的示例包进行聚类,把标记空间中的标记量化到聚类簇上,再以聚类簇为单位,利用TF-IDF算法对每个类别标记进行重要度评估和筛选,去除重要度低的标记,并将簇中的示例包与其余的类别标记拼接起来,以此来减少大类样本的出现,完成多示例多标记样本向多示例单标记样本的转化.在自然数据集上进行了实验,实验结果发现,改进算法的性能整体上优于原算法,尤其在Hamming loss、coverage、ranking loss三个评测指标上尤为明显,说明所提算法能够有效降低分类的出错率,提高算法的精度和分类效率.  相似文献   

10.
在多标记分类问题中,每个样本可以同时与多个标记类别相关,其中一些标记之间可能具有相关性,充分利用这些标记相关性,可优化分类性能.因此,文中利用标记的频繁项集对标记相关性进行挖掘,提出针对基于邻域粗糙集的多标记属性约简算法进行改进的特征选择算法,并进一步将训练样本根据特征之间的相似性进行聚类,结合局部样本上的标记相关性,进行属性约简及分类.在5个多标记分类数据集上的实验验证文中算法的有效性.  相似文献   

11.
Multi-label learning deals with objects associated with multiple class labels, and aims to induce a predictive model which can assign a set of relevant class labels for an unseen instance. Since each class might possess its own characteristics, the strategy of extracting label-specific features has been widely employed to improve the discrimination process in multi-label learning, where the predictive model is induced based on tailored features specific to each class label instead of the identical instance representations. As a representative approach, LIFT generates label-specific features by conducting clustering analysis. However, its performance may be degraded due to the inherent instability of the single clustering algorithm. To improve this, a novel multi-label learning approach named SENCE (stable label-Specific features gENeration for multi-label learning via mixture-based Clustering Ensemble) is proposed, which stabilizes the generation process of label-specific features via clustering ensemble techniques. Specifically, more stable clustering results are obtained by firstly augmenting the original instance repre-sentation with cluster assignments from base clusters and then fitting a mixture model via the expectation-maximization (EM) algorithm. Extensive experiments on eighteen benchmark data sets show that SENCE performs better than LIFT and other well-established multi-label learning algorithms.   相似文献   

12.
目前多标签学习已广泛应用到很多场景中,在此类学习问题中,一个样本往往可以同时拥有多个类别标签。由于类别标签可能带有的特有属性(即类属属性)将更有助于标签分类,所以已经出现了一些基于类属属性的多标签学习算法。针对类属属性构造会导致属性空间存在冗余的问题,本文提出了一种多标签类属特征提取算法LIFT_RSM。该方法基于类属属性空间通过综合利用随机子空间模型及成对约束降维思想提取有效的特征信息,以达到提升分类性能的目的。在多个数据集上的实验结果表明:与若干经典的多标签算法相比,提出的LIFT_RSM算法能得到更好的分类效果。  相似文献   

13.
Multi-label learning deals with the problem where each instance is associated with a set of class labels.In multilabel learning,different labels may have their own inherent characteristics for distinguishing each other,and the correlation information has shown promising strength in improving multi-label learning.In this study,we propose a novel multilabel learning method by simultaneously taking into account both the learning of label-specific features and the correlation information during the learning process.Firstly,we learn a sparse weight parameter vector for each label based on the linear regression model,and the label-specific features can be extracted according to the corresponding weight parameters.Secondly,we constrain label correlations directly on the output of labels,not on the corresponding parameter vectors which conflicts with the label-specific feature learning.Specifically,for any two related labels,their corresponding models should have similar outputs rather than similar parameter vectors.Thirdly,we also exploit the sample correlations through sparse reconstruction.The experimental results on 12 benchmark datasets show that the proposed method performs better than the existing methods.The proposed method ranks in the 1st place at 66.7%case and achieves optimal average rank in terms of all evaluation measures.  相似文献   

14.
在多标记学习中,每个样本都由一个实例表示,并与多个类标记相关联。现有的多标记学习算法大多是在全局利用标记相关性,即假设所有的样本共享不同类别标记之间的正相关性。然而,在实际应用中,不同的样本共享不同的标记相关性,标记间不仅存在正相关性,而且存在相互排斥的现象,即负相关性。针对这一问题,提出了基于局部正、负成对标记相关性的k近邻多标记分类算法PNLC。首先,对多标记数据的特征向量进行预处理,分别为每类标记构造对该类标记最具有判别能力的属性特征;然后,在训练阶段,PNLC算法通过所有训练样本中各样本的每个k近邻的真实标记构建标记之间的正、负局部成对相关性矩阵;最后,在测试阶段,首先得到每个测试样例的k近邻及其对应的正、负成对标记关系,利用该标记关系计算最大后验概率对测试样例进行预测。实验结果表明,PNLC算法在yeast和image数据集上的分类准确率明显优于其他常用的多标记分类算法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号