首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Semi‐Markovian jump systems are more general than Markovian jump systems in modeling practical systems. On the other hand, the finite‐time stochastic stability is also more effective than stochastic stability in practical systems. This paper focuses on the finite‐time stochastic stability, exponential stochastic stability, and stabilization of semi‐Markovian jump systems with time‐varying delay. First, a new stability condition is presented to guarantee the finite‐time stochastic stability of the system by using a new Lyapunov‐Krasovskii functional combined with Wirtinger‐based integral inequality. Second, the stability criterion is further proved to guarantee the exponential stochastic stability of the system. Moreover, a controller design method is also presented according to the stability criterion. Finally, an example is provided to illustrate that the proposed stability condition is less conservative than other existing results. Additionally, we use the proposed method to design a controller for a load frequency control system to illustrate the effectiveness of the method in a practical system of the proposed method.  相似文献   

2.
This paper deals with the problem of the robust stochastic stability for a class of singular systems with uncertain Markovian jump and time‐varying delay. Sufficient conditions on the stochastic stability are presented. The obtained results are formulated in terms of strict linear matrix inequalities. A numerical example is provided to show the effectiveness of the proposed approaches.  相似文献   

3.
This paper is concerned with delay‐dependent exponential stability for stochastic Markovian jump systems with nonlinearity and time‐varying delay. An improved exponential stability criterion for stochastic Markovian jump systems with nonlinearity and time‐varying delay is proposed without ignoring any terms by considering the relationship among the time‐varying delay, its upper bound and their difference, and using both Itô's differential formula and Lyapunov stability theory. A numerical example is given to illustrate the effectiveness and the benefits of the proposed method. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
This paper deals with the problems of stochastic stability and H analysis for Markovian jump linear systems with time‐varying delays. In terms of linear matrix inequalities, a less conservative delay‐dependent stability criterion for Markovian jump systems is proposed by constructing a different Lyapunov‐Krasovskii functional and introducing improved integral‐equalities approach, and a sufficient condition is derived from the H performance. Numerical examples are provided to demonstrate the efficiency and reduced conservatism of the results in this paper. Copyright © 2010 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

5.
In this paper, the problems of stochastic stability and stabilization for a class of uncertain time‐delay systems with Markovian jump parameters are investigated. The jumping parameters are modelled as a continuous‐time, discrete‐state Markov process. The parametric uncertainties are assumed to be real, time‐varying and norm‐bounded that appear in the state, input and delayed‐state matrices. The time‐delay factor is constant and unknown with a known bound. Complete results for both delay‐independent and delay‐dependent stochastic stability criteria for the nominal and uncertain time‐delay jumping systems are developed. The control objective is to design a state feedback controller such that stochastic stability and a prescribed ?‐performance are guaranteed. We establish that the control problem for the time‐delay Markovian jump systems with and without uncertain parameters can be essentially solved in terms of the solutions of a finite set of coupled algebraic Riccati inequalities or linear matrix inequalities. Extension of the developed results to the case of uncertain jumping rates is also provided. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

6.
This paper investigates the stochastic stability and stabilization problem for a general class of uncertain, continuous‐time Markov jump linear systems (MJLSs). The system under consideration is a piecewise‐homogenous Markovian structure subject to piecewise‐constant time‐varying transition rates (TRs). The time variation of the TRs is characterized by a high‐level Markovian signal, which is independent from the low‐level Markovian mechanism that governs the switching between the system dynamics. It is assumed that the structure is subject to mixed uncertainties in the form of additive norm‐bounded terms. The uncertainties help to consider the effect of imperfections induced by modeling errors for the system dynamics and the TRs of Markovian signals of both levels. This new uncertain, two‐level Markovian jump linear system is a more general model than the existing ones and is applicable to more practical situations. Besides, it is capable of being specialized to uncertain piecewise‐homogeneous MJLS with arbitrarily varying TRs, as well as the uncertain time‐homogeneous MJLS. The stability/stabilizability of this system is first examined by constructing a Lyapunov function which depends on both switching signals. Then, based on the analysis results, the corresponding robust controller gains are synthesized through solving a set of linear matrix inequalities (LMIs). Finally, simulation results for an industrial stirred tank reactor (CSTR) are used to demonstrate the applicability and potentials of the proposed theoretical method. Comparative simulations are also provided to show the superiority of the presented approach to the existing ones. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
This paper is concerned with the problem of stochastic stability analysis for a class of genetic regulatory networks with Markovian jump parameters and time‐varying delays. A delay‐dependent stability criterion is derived by using a novel mode‐dependent Lyapunov functional. The derived stability criterion is expressed in terms of linear matrix inequalities and is less conservative than the existing ones in the literature. A numerical example is provided to demonstrate the effectiveness of the proposed stability criterion. Copyright © 2011 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

8.
The paper investigates the problems of stability and stabilization of Markovian jump systems with time‐varying delays and uncertain transition rates matrix. First, the stochastic scaled small‐gain theorem is introduced to analyze the stability of the Markovian jump system. Then, a new stability criterion is proposed by using a new Lyapunov‐Krasovskii functional combined with Wirtinger‐based integral inequality. The proposed stability condition is demonstrated to be less conservative than other existing results. The merit of the proposed approach lies in its reduced conservatism, which is made possible by a new precise triangle inequality and a new Lyapunov‐Krasovskii functional. Moreover, a controller design criterion is presented according to the stability criterion. Furthermore, the transition rate matrix is treated as partially known and with uncertainty, and the relevant stability and stabilization criteria are proposed. Finally, 3 numerical examples are provided to illustrate the superior result of the stability criteria and the effectiveness of the proposed controller design method.  相似文献   

9.
This paper presents a bounded real lemma for discrete‐time Markovian jump singular systems. First, a new necessary and sufficient condition is proposed in terms of a strict linear matrix inequality, which guarantees the stochastic admissibility of the unforced Markovian jump singular systems. Then, a bounded real lemma for discrete‐time Markovian jump singular systems is derived. It is also proven that the bounded real lemma can be described by a strict matrix inequality. Finally, a numerical example is provided to illustrate the effectiveness of the proposed theory. The results are more tractable and reliable in numerical computations than existing conditions.  相似文献   

10.
In this paper, the problem of robust sampled‐data control for Itô stochastic Markovian jump systems (Itô SMJSs) with state delay is investigated. Using parameters‐dependent Lyapunov functionals and some stochastic equations, we give stochastic sufficient stability criteria for polytopic uncertain Itô SMJSs. As a corollary, stochastic sufficient stability criteria are given for nominal Itô SMJSs. For this two cases of Itô SMJSs, based on the obtained stochastic stability criteria, their time‐independent sampled‐data controllers are designed, respectively. Then, for designing a time‐dependent sampled‐data controller for Itô SMJSs, a parameters‐dependent time‐scheduled Lyapunov functional is developed. New stochastic sufficient stability criteria are obtained for polytopic uncertain Itô SMJSs and nominal Itô SMJSs. Furthermore, their time‐dependent sampled‐data controllers are designed, respectively. Lastly, a numerical example is provided to illustrate the effectiveness of the proposed method.  相似文献   

11.
This paper focuses on spatially interconnected Markovian jump systems with time‐varying delays. Firstly, a sufficient condition is given to check the well‐posedness, stochastic stability and contractiveness of spatially interconnected systems with the effect of time‐varying delays and Markovian jumping parameters. Secondly, the distributed controllers which inherit the structure of the plants are designed. A sufficient and necessary condition is proposed to guarantee the existence of the distributed controllers. Finally, an illustrative numerical example is given to show the effectiveness of the results.  相似文献   

12.
In this note, the problems of stability analysis and controller synthesis of Markovian jump systems with time‐varying delay and partially known transition rates are investigated via an input–output approach. First, the system under consideration is transformed into an interconnected system, and new results on stochastic scaled small‐gain condition for stochastic interconnected systems are established, which are crucial for the problems considered in this paper. Based on the system transformation and the stochastic scaled small‐gain theorem, stochastic stability of the original system is examined via the stochastic version of the bounded realness of the transformed forward system. The merit of the proposed approach lies in its reduced conservatism, which is made possible by a precise approximation of the time‐varying delay and the new result on the stochastic scaled small‐gain theorem. The proposed stability condition is demonstrated to be much less conservative than most existing results. Moreover, the problem of stabilization is further solved with an admissible controller designed via convex optimizations, whose effectiveness is also illustrated via numerical examples. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
This article investigates the event‐triggered finite‐time reliable control problem for a class of Markovian jump systems with time‐varying transition probabilities, time‐varying actuator faults, and time‐varying delays. First, a Luenberger observer is constructed to estimate the unmeasured system state. Second, by applying an event‐triggered strategy from observer to controller, the frequency of transmission is reduced. Third, based on linear matrix inequality technique and stochastic finite‐time analysis, event‐triggered observer‐based controllers are designed and sufficient conditions are given, which ensure the finite‐time boundedness of the closed‐loop system in an H sense. Finally, an example is utilized to show the effectiveness of the proposed controller design approach.  相似文献   

14.
This paper is concerned with the problem of H fuzzy controller synthesis for a class of discrete‐time nonlinear active fault‐tolerant control systems (AFTCSs) in a stochastic setting. The Takagi and Sugeno (T–S) fuzzy model is employed to exactly represent a nonlinear AFTCS. For this AFTCS, two random processes with Markovian transition characteristics are introduced to model the failure process of system components and the fault detection and isolation (FDI) decision process used to reconfigure the control law, respectively. The random behavior of the FDI process is conditioned on the state of the failure process. A non‐parallel distributed compensation (non‐PDC) scheme is adopted for the design of the fault‐tolerant control laws. The resulting closed‐loop fuzzy system is the one with two Markovian jump parameters. Based on a stochastic fuzzy Lyapunov function (FLF), sufficient conditions for the stochastic stability and H disturbance attenuation of the closed‐loop fuzzy system are first derived. A linear matrix inequality (LMI) approach to the fuzzy control design is then developed. Moreover, a suboptimal fault‐tolerant H fuzzy controller is given in the sense of minimizing the level of disturbance attenuation. Finally, a simulation example is presented to illustrate the effectiveness of the proposed design method. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
This paper considers the stochastic stability and stabilization of discrete‐time singular Markovian jump systems with partially unknown transition probabilities. Firstly, a set of necessary and sufficient conditions for the stochastic stability is proposed in terms of LMIs, then a set of sufficient conditions is proposed for the design of a state feedback controller to guarantee that the corresponding closed‐loop systems are regular, causal, and stochastically stable by employing the LMI technique. Finally, some examples are provided to demonstrate the effectiveness of the proposed approaches. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
The robust stochastic stability, stabilization and H control for mode‐dependent time‐delay discrete Markovian jump singular systems with parameter uncertainties are discussed. Based on the restricted system equivalent (r.s.e.) transformation and by introducing new state vectors, the singular system is transformed into a standard linear system, and delay‐dependent linear matrix inequalities (LMIs) conditions for the mode‐dependent time‐delay discrete Markovian jump singular systems to be regular, causal and stochastically stable, and stochastically stable with γ‐disturbance attenuation are obtained, respectively. With these conditions, robust stabilization problem and robust H control problem are solved, and the LMIs sufficient conditions are obtained. A numerical example illustrates the effectiveness of the method given in the paper. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
This paper considers the stabilization problem for a class of discrete‐time delayed systems by exploiting a partially delay‐dependent controller whose gains suffer a disordering phenomenon simultaneously. Two stochastic variables are used to describe the partially delay‐dependent and disordering properties, which are not independent, and referred to the original operation modes here. By introducing an augmented Markov chain, the corresponding closed‐loop system is transformed into a Markovian jump system with four new operation modes (NOMs). Based on the proposed model, a kind of controller depending on NOMs is firstly proposed with linear matrix inequalities forms. Moreover, without designing a controller containing NOMs directly, another kind of stabilizing controller referring to one depending on original operation modes is developed, which is composed of a series of NOM‐dependent controllers and satisfies a minimum variance approximation. Finally, two numerical examples are used to demonstrate the utility and superiority of the proposed methods. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
This article investigates the stability analysis and control design of a class of nonlinear positive Markovian jump systems with randomly occurring actuator faults and saturation. It is assumed that the actuator faults of each subsystem are varying and governed by a Markovian process. The nonlinear term is located in a sector. First, sufficient conditions for stochastic stability of the underlying systems are established using a stochastic copositive Lyapunov function. Then, a family of reliable L1‐gain controller is proposed for nonlinear positive Markovian jump systems with actuator faults and saturation in terms of a matrix decomposition technique. Under the designed controllers, the closed‐loop systems are positive and stochastically stable with an L1‐gain performance. An optimization method is presented to estimate the maximum domain of attraction. Furthermore, the obtained results are developed for general Markovian jump systems. Finally, numerical examples are given to illustrate the effectiveness of the proposed techniques.  相似文献   

19.
This paper studies the control problem for discrete‐time singular Markovian jump systems with repeated vector nonlinearities. Sufficient conditions for stochastic stability are established, where the uniqueness of solution to the underlying system is also guaranteed. Then, a series of formulations of stabilizing conditions is further developed to design mode‐dependent and mode‐independent controllers by using the linear matrix inequality approach. Based on the proposed results, more special cases for stabilizing controller are considered. Finally, numerical examples are used to demonstrate the effectiveness and superiority of the proposed methods. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
In this paper, the exponential H filter design problem is investigated for a general class of stochastic time‐varying delay system with Markovian jumping parameters. The stochastic uncertainties appear in both the dynamic and the measurement equations and the state delay is assumed to be time‐varying. Attention is focused on the design of mean‐square exponentially stable and Markovian jump filter such that the filtering error systems are mean‐square exponentially stable and the estimation error satisfies a given H performance. By introducing some slack matrix variables, delay‐dependent sufficient conditions for the solvability of the above problem are presented in terms of linear matrix inequalities (LMIs). In addition, the decay rate can be a given positive value without any other constraints. When the proposed LMIs are feasible, an explicit expression of the desired H filter can be given. A numerical example is provided to illustrate the effectiveness of the proposed design approach. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号