首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
针对资源量随时间变动的项目调度问题提出了一种新的离散人工蜂群求解算法。算法食物源的位置采用基于任务排列的编码方法,并提出一种可以保持解的离散性和可行性的候选食物源生成方法。仿真结果表明,该算法能有效地求解资源时变的受限项目调度问题,研究发现在保持资源总量不变甚至减少的情况下,通过调整资源配置能够显著缩短项目工期,可见资源配置优化在项目管理中的重要作用。  相似文献   

2.
The job shop scheduling problem (JSSP) is an important NP-hard practical scheduling problem that has various applications in the fields of optimization and production engineering. In this paper an effective scheduling method based on particle swarm optimization (PSO) for the minimum makespan problem of the JSSP is proposed. New variants of the standard PSO operators are introduced to adapt the velocity and position update rules to the discrete solution space of the JSSP. The proposed algorithm is improved by incorporating two neighborhood-based operators to improve population diversity and to avoid early convergence to local optima. First, the diversity enhancement operator tends to improve the population diversity by relocating neighboring particles to avoid premature clustering and to achieve broader exploration of the solution space. This is achieved by enforcing a circular neighboring area around each particle if the population diversity falls beneath the adaptable diversity threshold. The adaptive threshold is utilized to regulate the population diversity throughout the different stages of the search process. Second, the local search operator based on critical path analysis is used to perform local exploitation in the neighboring area of the best particles. Variants of the genetic well-known operators “selection” and “crossover” are incorporated to evolve stagnated particles in the swarm. The proposed method is evaluated using a collection of 123 well-studied benchmarks. Experimental results validate the effectiveness of the proposed method in producing excellent solutions that are robust and competitive to recent state-of-the-art heuristic-based algorithms reported in literature for nearly all of the tested instances.  相似文献   

3.
With the development of the globalization of economy and manufacturing industry, distributed manufacturing mode has become a hot topic in current production research. In the context of distributed manufacturing, one job has different process routes in different workshops because of heterogeneous manufacturing resources and manufacturing environments in each factory. Considering the heterogeneous process planning problems and shop scheduling problems simultaneously can take advantage of the characteristics of distributed factories to finish the processing task well. Thus, a novel network-based mixed-integer linear programming (MILP) model is established for distributed integrated process planning and scheduling problem (DIPPS). The paper designs a new encoding method based on the process network and its OR-nodes, and then proposes a discrete artificial bee colony algorithm (DABC) to solve the DIPPS problem. The proposed DABC can guarantee the feasibility of individuals via specially-designed mapping and switching operations, so that the process precedence constraints contained by the network graph can be satisfied in the entire procedure of the DABC algorithm. Finally, the proposed MILP model is verified and the proposed DABC is tested through some open benchmarks. By comparing with other powerful reported algorithms and obtaining new better solutions, the experiment results prove the effectiveness of the proposed model and DABC algorithm successfully.  相似文献   

4.
潘玉霞  谢光  肖衡 《计算机应用》2014,34(2):528-532
分别在有等待和无等待的情况下,深入分析了带有启动时间的批量调度问题,以最小化最大完成时间为目标,提出了两种离散和声搜索算法。针对算法本质连续而问题离散的矛盾,对和声搜索算法进行改进。首先提出了基于工序的编码方式,采用inver-over和重组两种离散算子产生候选解的进化机制;并利用改进的NEH(Nawaz-Enscore-Ham)方法进行初始化,产生的高质量和多样化的初始种群有效地指导了算法的进化方向,提高收敛速度;最后将一种简单而有效的局部邻域搜索方法嵌入到和声搜索算法中以增强其局部搜索能力。仿真实验和比较结果表明了所提算法的有效性。  相似文献   

5.
针对现今云计算任务调度只考虑单目标和云计算应用对虚拟资源的服务的质量要求高等问题,综合考虑了用户最短等待时间、资源负载均衡和经济原则,提出一种离散人工蜂群(ABC)算法的云任务调度优化策略。首先,从理论上建立了云任务调度的多目标数学模型;然后,结合偏好满意度策略并引入局部搜索算子和改变侦察蜂搜索方式,提出多目标离散型人工蜂群(MDABC)算法的优化策略。通过不同的云任务调度仿真实验,显示了改进离散人工蜂群算法相对于基础离散人工蜂群算法、遗传算法以及经典贪心算法,能够得到较高的综合满意度,表明了改进离散人工蜂群算法能够更好地改善虚拟资源中云任务调度系统的性能,具有一定的普适性。  相似文献   

6.
In this paper we present four discrete versions of two different existing honey bee optimization algorithms: the discrete artificial bee colony algorithm (DABC) and three versions of the discrete fast marriage in honey bee optimization algorithm (DFMBO1, DFMBO2, and DFMBO3). In these discretized algorithms we have utilized three logical operators, i.e. OR, AND and XOR operators. Then we have compared performances of our algorithms and those of three other bee algorithms, i.e. the artificial bee colony (ABC), the queen bee (QB), and the fast marriage in honey bee optimization (FMBO) on four benchmark functions for various numbers of variables up to 100. The obtained results show that our discrete algorithms are faster than other algorithms. In general, when precision of answer and number of variables are low, the difference between our new algorithms and the other three algorithms is small in terms of speed, but by increasing precision of answer and number of variables, the needed number of function evaluations for other algorithms increases beyond manageable amounts, hence their success rates decrease. Among our proposed discrete algorithms, the DFMBO3 is always fast, and achieves a success rate of 100% on all benchmarks with an average number of function evaluations not more than 1010.  相似文献   

7.
This study addresses urban traffic light scheduling problem (UTLSP). A centralized model is employed to describe the urban traffic light control problem in a scheduling framework. In the proposed model, the concepts of cycles, splits, and offsets are not adopted, making UTLSP fall in the class of model-based optimization problems, where each traffic light is assigned in a real-time manner by the network controller. The objective is to minimize the network-wise total delay time in a given finite horizon. A swarm intelligent algorithm, namely discrete harmony search (DHS), is proposed to solve the UTLSP. In the DHS, a novel new solution generation strategy is proposed to improve the algorithm’s performance. Three local search operators with different structures are proposed based on the feature of UTLSP to improve the performance of DHS in local space. An ensemble of local search methods is proposed to integrate different neighbourhood structures. Extensive computational experiments are carried out using the traffic data from partial traffic network in Singapore. The DHS algorithm with and without local search operators and ensemble is evaluated and tested. The comparisons and discussions verify the effectiveness of DHS algorithms with local search operators and ensemble for solving UTLSP.  相似文献   

8.
求解流水车间批量流集成调度的离散入侵杂草优化算法   总被引:1,自引:0,他引:1  
提出一种离散入侵杂草优化算法,用来解决最大完工时间目标的流水车间批量流集成调度问题.该调度问题包含两个紧密耦合的子问题:批次分割问题和考虑启动时间的批次调度问题.设计了两段字符串编码,用来表示两个子问题.与基本入侵杂草优化算法不同,所提算法基于适应度和年龄确定杂草种子数量,基于正切函数和连续邻域操作产生种子.8种邻域算子的混合应用与局部搜索增强了算法的求解能力.仿真实验表明了所提算法的有效性.  相似文献   

9.
To minimize the makespan in permutation flowshop scheduling problems, a hybrid discrete artificial bee colony (HDABC) algorithm is presented. In the HDABC, each solution to the problem is called a food source and represented by a discrete job permutation. First, the initial population with certain quality and diversity is generated from Greedy Randomized Adaptive Search Procedure (GRASP) based on Nawaz–Enscore–Ham (NEH) heuristics. Second, the discrete operators and algorithm, such as insert, swap, path relinking and GRASP are applied to generate new solution for the employed bees, onlookers and scouts. Moreover, local search is applied to the best one. The presented algorithm is tested on scheduling problem benchmarks. Experimental results show its efficiency.  相似文献   

10.
This paper investigates a multi-objective green co-scheduling problem of ship lift and ship lock (GCP-SL&SL) at the Three Gorges Cascade Hub (TGCH). A mathematical model of GCP-SL&SL with objectives of the average utilizations rate of the lock chamber, average waiting time and total energy consumption of vessels, is proposed by separating it into three sub-problems: the facility assignment, lockage assignment and lockage operation scheduling. To solve this problem, a discrete multi-objective artificial bee colony (DMOABC) algorithm is developed. Within the DMOABC, a two-dimensional matrix encoding scheme is designed to encode and a group right-shift decoding scheme is specifically proposed to decode each food source. Then, a novel fitness evaluation mechanism based on fuzzy relative entropy is introduced to hand this multi-objective problem. Next, the food sources are improved from three aspects: (1) the employed bee phase uses new evolutionary operators for fast local search; (2) the onlooker bee phase adopts a modified tabu search for strong global search; (3) the scout bee phase embeds chemical reaction optimization for disturbing population. Finally, extensive experiments are conducted with the real data from historical traffic at TGCH. The results demonstrate our proposed algorithm is significantly better at solving the GCP-SL&SL than other five well-known multi-objective algorithms. The effect analysis under different scenarios indicates that the average waiting time of vessels at the dam is greatly reduced because of considering the synchronous moving process.  相似文献   

11.
针对认知无线电中以最大化网络效益为准则的频谱分配难题以及蝠鲼觅食优化(MRFO)算法难以解决频谱分配问题的不足,提出一种离散蝠鲼觅食优化(DMRFO)算法.根据工程中频谱分配问题具有亲1性的特点,首先,基于Sigmoid函数(SF)离散法对MRFO算法进行离散二进制化;然后,通过异或算子和速度调节因子引导蝠鲼根据当前速...  相似文献   

12.
张维存  高蕊  张曼 《计算机应用》2019,39(11):3383-3390
针对生产-配送联合调度(IPDS)模型较少考虑复杂生产环境以及采购环节的问题,建立了在作业车间环境下,以最小化订单完成时间为目标的采购-生产-配送联合调度(IPPDS)模型,并采用改进的动态人工蜂群(DABC)算法进行求解。根据IPPDS问题的特征,首先,采用二维实数矩阵的编码方式,实现任务(加工与运输)与资源(设备与车辆)的匹配关系;其次,采用基于工艺过程的解码方式,并在解码过程中针对不同任务设计了满足约束条件的方法,来保证解码方案的可行性;最后,在算法过程中设计了引领蜂与跟随蜂的动态协调机制和局部启发式信息。通过实验给出DABC适当的参数区间,对比实验结果表明,IPPDS策略相较于分段调度和IPDS策略,调度时间分别缩短了35.59%和30.95%;DABC相较于人工蜂群(ABC)算法求解效果平均提升了2.54%,相对于改进的遗传算法(AGA)求解效果平均提升了6.99%。因此,IPPDS策略能更快速地满足客户需求,而DABC算法既减少需设置的参数,又具有良好的探索和开发能力。  相似文献   

13.
针对多种车型可用的多校校车路径问题(SBRP),建立数学模型,并提出了一种迭代局部搜索(ILS)元启发算法进行求解。该算法引入并改进了带时间窗的装卸一体化问题(PDPTW)求解中的点对邻域算子,并使用可变邻域下降搜索(VND)完成局部提升。局部提升过程中,设计一种基于路径段的车型调整策略,尽可能地调整车型,降低成本,并允许接受一定偏差范围内的邻域解以保证搜索的多样性。对于局部提升得到的最好解,使用多点移动方法对其进行扰动,以避免算法过早陷入局部最优。在国际基准测试案例上分别测试多校混载和不混载模式下算法的性能,实验结果验证了设计算法的有效性。进一步使用提出的算法求解单车型多校SBRP问题,并与后启发算法、模拟退火算法和记录更新法等算法进行比较,实验结果表明该算法仍然能够获得较好的优化效果。  相似文献   

14.
In this paper, an effective hybrid discrete differential evolution (HDDE) algorithm is proposed to minimize the maximum completion time (makespan) for a flow shop scheduling problem with intermediate buffers located between two consecutive machines. Different from traditional differential evolution algorithms, the proposed HDDE algorithm adopted job permutation to represent individuals and applies job-permutation-based mutation and crossover operations to generate new candidate solutions. Moreover, a one-to-one selection scheme with probabilistic jumping is used to determine whether the candidates will become members of the target population in next generation. In addition, an efficient local search algorithm based on both insert and swap neighborhood structures is presented and embedded in the HDDE algorithm to enhance the algorithm’s local searching ability. Computational simulations and comparisons based on the well-known benchmark instances are provided. It shows that the proposed HDDE algorithm is not only capable to generate better results than the existing hybrid genetic algorithm and hybrid particle swarm optimization algorithm, but outperforms two recently proposed discrete differential evolution (DDE) algorithms as well. Especially, the HDDE algorithm is able to achieve excellent results for large-scale problems with up to 500 jobs and 20 machines.  相似文献   

15.
This paper presents a novel discrete differential evolution (DDE) algorithm for solving the no-wait flow shop scheduling problems with makespan and maximum tardiness criteria. First, the individuals in the DDE algorithm are represented as discrete job permutations, and new mutation and crossover operators are developed based on this representation. Second, an elaborate one-to-one selection operator is designed by taking into account the domination status of a trial individual with its counterpart target individual as well as an archive set of the non-dominated solutions found so far. Third, a simple but effective local search algorithm is developed to incorporate into the DDE algorithm to stress the balance between global exploration and local exploitation. In addition, to improve the efficiency of the scheduling algorithm, several speed-up methods are devised to evaluate a job permutation and its whole insert neighborhood as well as to decide the domination status of a solution with the archive set. Computational simulation results based on the well-known benchmarks and statistical performance comparisons are provided. It is shown that the proposed DDE algorithm is superior to a recently published hybrid differential evolution (HDE) algorithm [Qian B, Wang L, Huang DX, Wang WL, Wang X. An effective hybrid DE-based algorithm for multi-objective flow shop scheduling with limited buffers. Computers & Operations Research 2009;36(1):209–33] and the well-known multi-objective genetic local search algorithm (IMMOGLS2) [Ishibuchi H, Yoshida I, Murata T. Balance between genetic search and local search in memetic algorithms for multiobjective permutation flowshop scheduling. IEEE Transactions on Evolutionary Computation 2003;7(2):204–23] in terms of searching quality, diversity level, robustness and efficiency. Moreover, the effectiveness of incorporating the local search into the DDE algorithm is also investigated.  相似文献   

16.
A bounding box search algorithm for DEM simulation   总被引:1,自引:0,他引:1  
In Discrete Element Method (DEM) simulations, the most costly operation performed by the program in terms of CPU time is often the process of identifying which pairs of particles are potentially in contact. Program performance can especially be degraded when the relative size difference between the smallest and largest discrete elements is greater than a factor of 2 to 5. Recently, particle-based searches with a hierarchy of cell spaces were proposed to eliminate the size-dependence problem (Peters et al. (2009) [1]), He et al. (2007) [2]. Both methods allowed the cell size to be based on the diameter of the smallest particles, and the methods were found to be effective. In this paper, the authors evaluate the performance of a related but simpler algorithm dubbed the ‘bounding box search method’. The bounding box method entails identifying all cells which any part of a target particle may occupy, listing the target particle as present in those cells, and searching for potential contacts over the same set of cells (the ‘bounding box’). Where the hierarchy methods improve performance by creating multiple cell spaces based on particle sizes, the bounding box method uses only a single cell space, but allows the cell size to be based on the smallest particles, rather than the largest. To evaluate the performance of the bounding box algorithm, timed simulations were performed on systems with varying numbers of particles and particle size distributions, and runtimes were compared to identical systems simulated using a so-called ‘basic’ search algorithm, which places a target particle in a single cell and searches over all neighboring cells. Results presented herein show the bounding box approach to yield improved performance relative to the simple search method for most systems, especially those with the largest numbers of particles and least uniform size distributions. The effect of selected cell size is also examined, and it is shown that cell sizes between one and two times the smallest particle diameter yielded the best performance.  相似文献   

17.
Obtaining an optimal solution for a permutation flowshop scheduling problem with the total flowtime criterion in a reasonable computational timeframe using traditional approaches and optimization tools has been a challenge. This paper presents a discrete artificial bee colony algorithm hybridized with a variant of iterated greedy algorithms to find the permutation that gives the smallest total flowtime. Iterated greedy algorithms are comprised of local search procedures based on insertion and swap neighborhood structures. In the same context, we also consider a discrete differential evolution algorithm from our previous work. The performance of the proposed algorithms is tested on the well-known benchmark suite of Taillard. The highly effective performance of the discrete artificial bee colony and hybrid differential evolution algorithms is compared against the best performing algorithms from the existing literature in terms of both solution quality and CPU times. Ultimately, 44 out of the 90 best known solutions provided very recently by the best performing estimation of distribution and genetic local search algorithms are further improved by the proposed algorithms with short-term searches. The solutions known to be the best to date are reported for the benchmark suite of Taillard with long-term searches, as well.  相似文献   

18.
研究带有风险考量的大型工程项目调度问题,将调度方案的风险作为计划制定的目标之一,给出调度方案风险值的计量方法和相关原则,构建工程项目工期-成本-质量-风险多目标优化模型。基于关键路径法和活动时差,提出项目调度局部优化算法,用于改进基于分解的多目标进化算法。实例验证结果表明,该模型与算法可有效解决工程优化问题。  相似文献   

19.
An improved approach to compute the inverse discrete cosine transform (IDCT) for image and video coding applications for mobile devices is proposed based on B.G. Lee algorithm. We replace the multiplication operators in original B.G. Lee's algorithm with addition and shift operators to realize the fix-point computation. Due to the absence of the multiplication operators, this modified algorithm takes less time to complete the computation than the traditional B.G. Lee's.  相似文献   

20.
In this paper, we addressed two significant characteristics in practical casting production, namely tolerated time interval (TTI) and limited starting time interval (LimSTI). With the consideration of TTI and LimSTI, a multi-objective flexible job-shop scheduling model is constructed to minimize total overtime of TTI, total tardiness and maximum completion time. To solve this model, we present a hybrid discrete particle swarm optimization integrated with simulated annealing (HDPSO-SA) algorithm which is decomposed into global and local search phases. The global search engine based on discrete particle swarm optimization includes two enhancements: a new initialization method to improve the quality of initial population and a novel gBest selection approach based on extreme difference to speed up the convergence of algorithm. The local search engine is based on simulated annealing algorithm, where four neighborhood structures are designed under two different local search strategies to help the proposed algorithm jump over the trap of local optimal solution. Finally, computational results of a real-world case and simulation data expanded from benchmark problems indicate that our proposed algorithm is significant in terms of the quality of non-dominated solutions compared to other algorithms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号