首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 93 毫秒
1.
This study presents an alternative assessment of the MODIS LAI product for a 58,000 ha evergreen needleleaf forest located in the western Rocky Mountain range in northern Idaho by using lidar data to model (R2 = 0.86, RMSE = 0.76) and map LAI at higher resolution across a large number of MODIS pixels in their entirety. Moderate resolution (30 m) lidar-based LAI estimates were aggregated to the resolution of the 1-km MODIS LAI product and compared to temporally-coincident MODIS retrievals. Differences in the MODIS and lidar-derived values of LAI were grouped and analyzed by several different factors, including MODIS retrieval algorithm, sun/sensor geometry, and sub-pixel heterogeneity in both vegetation and terrain characteristics. Of particular interest is the disparity in the results when MODIS LAI was analyzed according to algorithm retrieval class. We observed relatively good agreement between lidar-derived and MODIS LAI values for pixels retrieved with the main RT algorithm without saturation for LAI LAI ≤ 4. Moreover, for the entire range of LAI values, considerable overestimation of LAI (relative to lidar-derived LAI) occurred when either the main RT with saturation or back-up algorithm retrievals were used to populate the composite product regardless of sub-pixel vegetation structural complexity or sun/sensor geometry. These results are significant because algorithm retrievals based on the main radiative transfer algorithm with or without saturation are characterized as suitable for validation and subsequent ecosystem modeling, yet the magnitude of difference appears to be specific to retrieval quality class and vegetation structural characteristics.  相似文献   

2.
A prototype product suite, containing the Terra 8-day, Aqua 8-day, Terra-Aqua combined 8- and 4-day products, was generated as part of testing for the next version (Collection 5) of the MODerate resolution Imaging Spectroradiometer (MODIS) leaf area index (LAI) products. These products were analyzed for consistency between Terra and Aqua retrievals over the following data subsets in North America: single 8-day composite over the whole continent and annual time series over three selected MODIS tiles (1200 × 1200 km). The potential for combining retrievals from the two sensors to derive improved products by reducing the impact of environmental conditions and temporal compositing period was also explored. The results suggest no significant discrepancies between large area (from continent to MODIS tile) averages of the Terra and Aqua 8-day LAI and surface reflectances products. The differences over smaller regions, however, can be large due to the random nature of residual atmospheric effects. High quality retrievals from the radiative transfer based algorithm can be expected in 90-95% of the pixels with mostly herbaceous cover and about 50-75% of the pixels with woody vegetation during the growing season. The quality of retrievals during the growing season is mostly restricted by aerosol contamination of the MODIS data. The Terra-Aqua combined 8-day product helps to minimize this effect and increases the number of high quality retrievals by 10-20% over woody vegetation. The combined 8-day product does not improve the number of high quality retrievals during the winter period because the extent of snow contamination of Terra and Aqua observations is similar. Likewise, cloud contamination in the single-sensor and combined products is also similar. The LAI magnitudes, seasonal profiles and retrieval quality in the combined 4-day product are comparable to those in the single-sensor 8-day products. Thus, the combined 4-day product doubles the temporal resolution of the seasonal cycle, which facilitates phenology monitoring in application studies during vegetation transition periods. Both Terra and Aqua LAI products show anomalous seasonality in boreal needle leaf forests, due to limitations of the radiative transfer algorithm to model seasonal variations of MODIS surface reflectance data with respect to solar zenith angle. Finally, this study suggests that further improvement of the MODIS LAI products is mainly restricted by the accuracy of the MODIS observations.  相似文献   

3.
A simple data analysis technique for vegetation leaf area index (LAI) using Moderate Resolution Imaging Spectroradiometer (MODIS) data is presented. The objective is to generate LAI data that is appropriate for numerical weather prediction. A series of techniques and procedures which includes data quality control, time-series data smoothing, and simple data analysis is applied. The LAI analysis is an optimal combination of the MODIS observations and derived climatology, depending on their associated errors σo and σc. The “best estimate” LAI is derived from a simple three-point smoothing technique combined with a selection of maximum LAI (after data quality control) values to ensure a higher quality. The LAI climatology is a time smoothed mean value of the “best estimate” LAI during the years of 2002-2004. The observation error is obtained by comparing the MODIS observed LAI with the “best estimate” of the LAI, and the climatological error is obtained by comparing the “best estimate” of LAI with the climatological LAI value. The LAI analysis is the result of a weighting between these two errors. Demonstration of the method described in this paper is presented for the 15-km grid of Meteorological Service of Canada (MSC)'s regional version of the numerical weather prediction model. The final LAI analyses have a relatively smooth temporal evolution, which makes them more appropriate for environmental prediction than the original MODIS LAI observation data. They are also more realistic than the LAI data currently used operationally at the MSC which is based on land-cover databases.  相似文献   

4.
The Satellite Application Facility on Land Surface Analysis (Land-SAF) aims to provide land surface variables for the meteorological and environmental science communities from EUMETSAT satellites. This study assesses the performance of a simplified (i.e. random distribution of vegetation is assumed) version of the Land-SAF algorithm for the estimation of Leaf Area Index (LAI) when prototyped with VEGETATION (processed in CYCLOPES program) and MODIS reflectances. The prototype estimates of LAI are evaluated both by comparison with validated CYCLOPES and MODIS LAI products derived from the same sensors and directly through comparison with ground-based estimates. Emphasis is given on evaluating the impact of the algorithm and input data on LAI retrieval discrepancies. Analysis is achieved over Europe for the 2000-2003 period. The results demonstrate the capacity of the Land-SAF algorithm to retrieve consistent LAI estimates from multiple optical sensors even when their reflectances present systematic differences. High spatial and temporal consistencies between Land-SAF prototype estimates and existing LAI products are found. The differences between Land-SAF and CYCLOPES LAI are lower than their uncertainties (RMSE (relative RMSE) within 0.4 (30%)). Land-SAF prototype estimates and MODIS LAI show larger discrepancies mainly due to differences in the vegetation structure representation and algorithm assumptions (RMSE ranging from 0.2 (30%) up to 0.8 (40%)). Land-SAF prototype provides higher LAI values than MODIS for herbaceous canopies (i.e. shrubs, grasses and crops) and lower values for woody biomes (i.e. savannas and forests). Direct validation indicates that LAI estimates from prototyping of the Land-SAF algorithm with CYCLOPES and MODIS reflectances achieve similar performances (differences with ground measurements are lower than 0.5 LAI units in 60% and 50% of the cases, respectively) as CYCLOPES and MODIS LAI products. Results from this prototyping exercise appear useful for improved retrieval of LAI and constitute a step forward for refinement, validation and consolidation of the Land-SAF algorithm.  相似文献   

5.
The MODIS land science team produces a number of standard products, including land cover and leaf area index (LAI). Critical to the success of MODIS and other sensor products is an independent evaluation of product quality. In that context, we describe a study using field data and Landsat ETM+ to map land cover and LAI at four 49-km2 sites in North America containing agricultural cropland (AGRO), prairie grassland (KONZ), boreal needleleaf forest, and temperate mixed forest. The purpose was to: (1) develop accurate maps of land cover, based on the MODIS IGBP (International Geosphere-Biosphere Programme) land cover classification scheme; (2) derive continuous surfaces of LAI that capture the mean and variability of the LAI field measurements; and (3) conduct initial MODIS validation exercises to assess the quality of early (i.e., provisional) MODIS products. ETM+ land cover maps varied in overall accuracy from 81% to 95%. The boreal forest was the most spatially complex, had the greatest number of classes, and the lowest accuracy. The intensive agricultural cropland had the simplest spatial structure, the least number of classes, and the highest overall accuracy. At each site, mapped LAI patterns generally followed patterns of land cover across the site. Predicted versus observed LAI indicated a high degree of correspondence between field-based measures and ETM+ predictions of LAI. Direct comparisons of ETM+ land cover maps with Collection 3 MODIS cover maps revealed several important distinctions and similarities. One obvious difference was associated with image/map resolution. ETM+ captured much of the spatial complexity of land cover at the sites. In contrast, the relatively coarse resolution of MODIS did not allow for that level of spatial detail. Over the extent of all sites, the greatest difference was an overprediction by MODIS of evergreen needleleaf forest cover at the boreal forest site, which consisted largely of open shrubland, woody savanna, and savanna. At the agricultural, temperate mixed forest, and prairie grassland sites, ETM+ and MODIS cover estimates were similar. Collection 3 MODIS-based LAI estimates were considerably higher (up to 4 m2 m−2) than those based on ETM+ LAI at each site. There are numerous probable reasons for this, the most important being the algorithms' sensitivity to MODIS reflectance calibration, its use of a prelaunch AVHRR-based land cover map, and its apparent reliance on mainly red and near-IR reflectance. Samples of Collection 4 LAI products were examined and found to consist of significantly improved LAI predictions for KONZ, and to some extent for AGRO, but not for the other two sites. In this study, we demonstrate that MODIS reflectance data are highly correlated with LAI across three study sites, with relationships increasing in strength from 500 to 1000 m spatial resolution, when shortwave-infrared bands are included.  相似文献   

6.
Leaf area index (LAI) is an important variable needed by various land surface process models. It has been produced operationally from the Moderate Resolution Imaging Spectroradiometer (MODIS) data using a look-up table (LUT) method, but the inversion accuracy still needs significant improvements. We propose an alternative method in this study that integrates both the radiative transfer (RT) simulation and nonparametric regression methods. Two nonparametric regression methods (i.e., the neural network [NN] and the projection pursuit regression [PPR]) were examined. An integrated database was constructed from radiative transfer simulations tuned for two broad biome categories (broadleaf and needleleaf vegetations). A new soil reflectance index (SRI) and analytically simulated leaf optical properties were used in the parameterization process. This algorithm was tested in two sites, one at Maryland, USA, a middle latitude temperate agricultural area, and the other at Canada, a boreal forest site, and LAI was accurately estimated. The derived LAI maps were also compared with those from MODIS science team and ETM+ data. The MODIS standard LAI products were found consistent with our results for broadleaf crops, needleleaf forest, and other cover types, but overestimated broadleaf forest by 2.0-3.0 due to the complex biome types.  相似文献   

7.
Lidar provides enhanced abilities to remotely map leaf area index (LAI) with improved accuracies. We aim to further explore the capability of discrete-return lidar for estimating LAI over a pine-dominated forest in East Texas, with a secondary goal to compare the lidar-derived LAI map and the GLOBCARBON moderate-resolution satellite LAI product. Specific problems we addressed include (1) evaluating the effects of analysts and algorithms on in-situ LAI estimates from hemispherical photographs (hemiphoto), (2) examining the effectiveness of various lidar metrics, including laser penetration, canopy height and foliage density metrics, to predict LAI, (3) assessing the utility of integrating Quickbird multispectral imagery with lidar for improving the LAI estimate accuracy, and (4) developing a scheme to co-register the lidar and satellite LAI maps and evaluating the consistency between them. Results show that the use of different analysts or algorithms in analyzing hemiphotos caused an average uncertainty of 0.35 in in-situ LAI, and that several laser penetration metrics in logarithm models were more effective than other lidar metrics, with the best one explaining 84% of the variation in the in-situ LAI (RMSE = 0.29 LAI). The selection of plot size and height threshold in calculating laser penetration metrics greatly affected the effectiveness of these metrics. The combined use of NDVI and lidar metrics did not significantly improve estimation over the use of lidar alone. We also found that mis-registration could induce a large artificial discrepancy into the pixelwise comparison between the coarse-resolution satellite and fine-resolution lidar-derived LAI maps. By compensating for a systematic sub-pixel shift error, the correlation between two maps increased from 0.08 to 0.85 for pines (n = 24 pixels). However, the absolute differences between the two LAI maps still remained large due to the inaccuracy in accounting for clumping effects. Overall, our findings imply that lidar offers a superior tool for mapping LAI at local to regional scales as compared to optical remote sensing, accuracies of lidar-estimate LAI are affected not only by the choice of models but also by the absolute accuracy of in-situ reference LAI used for model calibration, and lidar-derived LAI maps can serve as reliable references for validating moderate-resolution satellite LAI products over large areas.  相似文献   

8.
The aim of this paper was to serve as a pilot study for running a physically based forest reflectance model through an operational forest management data base in Finnish coniferous forests. The LAI values of 250 boreal coniferous stands were retrieved with the physically based model by inversion from a SPOT HRVIR1 image. The use of three spectral vegetation indices (NDVI, RSR and MSI) in LAI estimation was tested for the same stands. Ground-truth LAI was based on an allometric model which can be applied to routine stand inventory data. Stand reflectances were computed as an average of reflectances of the pixels located within the digital stand borders.The relationships of LAI and spectral vegetation indices calculated from the SPOT data were very scattered. RSR exhibited the widest range of values (and the highest correlation with LAI), suggesting it to be more dynamic than MSI or NDVI. Inversion of the reflectance model was done twice: first using as simultaneous input three wavelength bands (red, NIR and MIR), then only the red and NIR bands. The aim was to observe whether including the MIR band in the inversion would improve the inverted LAI estimates or if using only the red and NIR bands would result in the same reliability of inverted values. The motivation for examining the influence of the MIR band resulted from several recent studies from the boreal zone which suggest that the pronounced understory effect could be minimized by the inclusion of the MIR band. The LAI values inverted by the model were slightly larger than the ground-truth LAI values. A minor improvement in LAI estimates was observed after the inclusion of the MIR band in reflectance model inversion. The errors in the ground-truth LAI were uncertain and the background understory reflectance was expected to be highly variable. Thus, the quality of the data used may be to a large extent responsible for the observed low utility of the tested channels.  相似文献   

9.
Climate change is predicted to alter the canopy phenology of temperate and boreal forests, which will affect carbon, water, and energy budgets. Therefore, there is a great need to evaluate remotely sensed products for their potential to accurately capture canopy dynamics. The objective of this study was to compare several products derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) to field measurements of fraction photosynthetically active radiation (FPAR) and plant area index (PAI) for a deciduous broadleaf forest in northern Wisconsin in 2002. MODIS products captured the general phenological development of the canopy although MODIS products overestimated the leaf area during the overstory leaf out period. Field data suggest that the period from budburst to canopy maturity, or maximum PAI, occurred in 10 to 12 days while MODIS products predicted onset of greenness and maturity from 1 to 21 days and 0 to 19 days earlier than that from field observations, respectively. Temporal compositing of MODIS data and understory development are likely key factors explaining differences with field data. Maximum PAI estimates differed only by 7% between field derived and MODIS-based estimates of LAI. Implications for ecosystem modeling of carbon and water exchange and future research needs are discussed.  相似文献   

10.
Information on vegetation status can be retrieved from satellite observations by modelling and inverting canopy radiative transfer. Agricultural monitoring and yield forecasting could greatly benefit from such techniques by coupling crop growth models with crop specific information through data assimilation. An indicator which would be particularly interesting to obtain from remote sensing is the total surface of photosynthetically active plant tissue, or green area index (GAI). Currently, the major limitation is that the imagery that can be used operationally and economically over large areas with high temporal frequency has a coarse spatial resolution. This paper demonstrates how it is possible to characterise the regional crop specific GAI range along with its temporal dynamic using MODIS imagery by controlling the degree at which the observation footprints of the coarse pixels fall within the crop-specific mask delineating the target. This control is done by modelling the instrument's point spread function and by filtering out less reliable GAI estimations in both the spatial and temporal dimensions using thresholds on 3 variables: pixel purity, observation coverage and view zenith angle. The difference in performance between MODIS and fine spatial resolution to estimate the median GAI of a given crop over a 40 × 40 km study region can be reduced to a RMSE of 0.053 m2/m2. The consistency between fine and coarse spatial resolution GAI estimations suggests a possible instrument synergy whereby the high temporal resolution of MODIS provides the general GAI trajectory and while high spatial resolution can be used to estimate the local GAI spatial heterogeneity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号