共查询到17条相似文献,搜索用时 78 毫秒
1.
产品垃圾评论检测研究综述 总被引:4,自引:2,他引:2
互联网上的产品垃圾评论混淆视听,误导了潜在消费者。产品垃圾评论检测的目的就是将垃圾评论从评论文本中找到并去除,保留真实的产品评论供用户参考。首先将产品垃圾评论和互联网上其它常见的垃圾信息进行了对比,并把产品垃圾评论的检测和产品评论的质量判断、产品评论的情感分析等相关的工作进行了比较分析。然后从产品垃圾评论检测的数据集、检测方法两个角度对相关工作做了概述和分析。最后,在上述工作的基础上提出了一些产品垃圾评论检测研究中值得进一步关注的问题。 相似文献
2.
随着互联网的迅速发展,越来越多的用户评论出现在社交网站上。面对迅速增长的评论数据,如何为阅读评论的消费者提供准确、真实的高质量评论就显得尤为重要。评论质量检测旨在判断在线评论的质量,在传统的研究中,文本信息通常独立地被用于预测评论质量。但是在社交媒体上,每个文本之间不是独立的,而是可以通过发表文本的作者与其他文本相关联,即同一个用户或相近的用户发表的评论质量具有一定的相似性。因此,为了更好的构建文本的表示和研究文本之间基于用户的关联,该文基于神经网络模型分别构建用户和文本的表示,同时,为了放大用户信息的作用,我们进一步将基于注意力机制的用户信息融合到文本中,从而提高文本评论质量检测的效果。在Yelp 2013数据集上进行实验的结果表明,该模型能有效地提高在线评论质量检测的性能。 相似文献
3.
基于用户行为的产品垃圾评论者检测研究 总被引:2,自引:0,他引:2
为找到垃圾评论的制造者,提出一种基于用户行为的产品垃圾评论者检测方法。从垃圾评论者的行为目的出发,将其发表垃圾评论的5种行为模式作为垃圾评论者的检测指标,从卓越亚马逊网站获取1 470个评论用户,按单指标选取、5个指标集成选取的方法确定最可能和最不可能成为垃圾评论者的评论用户各25个,并对这50个评论者进行人工标记,根据标记结果设计有监督的线性回归模型。实验结果表明,该模型从1 470个评论者中发现88个用户为垃圾评论者,对垃圾评论者的检测效果优于基于用户有用性投票的基准方法。 相似文献
4.
商品评论对消费者的购买意愿有明显导向作用,欺诈者可杜撰评论来过度褒奖或恶意贬低商品,以此来促进己方或是打击对方的商品销售,垃圾商品评论检测成为了一项迫切需要的技术。首先将相关研究分为以评论内部(文本特征)为中心和以评论外部(文本特征)为中心的两大类,然后分别综述它们在特征选择、学习方法上的研究进展,并介绍了垃圾商品评论检测领域的常用评论数据集,在此基础上,展望了该领域的热点研究方向。 相似文献
5.
对代码托管平台中的用户评论进行研究发现,用户评论中反映的代码质量信息可以帮助用户快速选择满足其需求的开源代码,并且可以帮助软件开发人员提高代码质量。但是当前研究存在代码质量信息提取不全面和不够准确的问题,为此提出一种基于事件图谱的代码质量分析方法来对用户评论中的代码质量信息进行分析。构建代码质量层次图表示多方面的代码质量信息结构;对用户评论进行分析,构建针对代码用户评论的事件图谱;提出将事件图谱映射为代码质量层次图的方法;对代码质量层次图中的代码质量信息进行识别。实验结果表明,该方法在代码评论文本中识别代码质量信息的平均准确率为86.9%,因此该方法能够对代码质量信息进行有效识别和分析。 相似文献
6.
随着IT社区和代码托管平台的发展,针对代码的用户评论数量急剧增加。用户在使用代码后给出的评论中包含丰富的静态和动态代码质量信息,对其进行提取与分析将有助于开发者了解用户关注的代码质量信息,以有针对性地提升代码质量,还有助于用户选择满足要求的代码。为此,文中提出了包含静态特性和动态特性的代码质量模型,以及识别并分析用户评论中代码质量信息的方法。首先,根据评价对象和评价句型规则识别出具有代码质量的用户评论;然后,应用评价对象和评价观点抽取代码质量属性表现;最后,通过分析代码质量属性表现和情感倾向给出代码静态和动态质量的相关结果。实验结果表明,所提方法能够有效地分析用户评论中的代码质量信息。 相似文献
7.
随着互联网的发展,用户倾向于在购物、旅游、用餐之前参考线上评论.之后,他们也会发表评论来表达自身意见.线上评论越来越具有价值.评论对用户决策的重要导向作用催生了虚假评论.虚假评论,指用户由于利益、个人偏见等因素发布的不符合产品真实特性的评论.这些虚假评论语言上模仿真实评论,消费者很难识别出来.国内外学者综合运用自然语言处理技术来研究虚假评论检测问题.从特征工程的角度分析,虚假评论检测方法可以分为三类:基于语言特征和行为特征的方法、基于图结构的方法、基于表示学习的方法.主要描述了检测的一般流程,归纳了三类研究方法常用的特征,比较了方法的优缺点,并且介绍了研究常用的数据集.最后探讨了未来研究方向. 相似文献
8.
随着微博的日趋流行,微博网站已成为海量信息的发布体,对微博的研究也需要从单一的用户关系分析向微博用户及其转发内容的挖掘进行转变,该文提出了一种新的方法挖掘微博用户评论和所转发微博的文字信息,将被用户关注的层面发掘出来,从而并产生推荐。 相似文献
9.
为了识别商品垃圾评论,基于垃评论员发表的多为垃圾评论这一基本思想,提出一种基于评论员评论行为来判定其是否为垃圾评论员的方法。分析定义了垃圾评论员常见的三类评论行为,分别是针对同类商品发表垃圾评论,针对同品牌商品发表垃圾评论和针对同一卖家商品发表垃圾评论;在对这三类评论行为建模的同时提出一种依据重复性过高或过低打分的评论数量来计算评论员垃圾指数(spam score)的方法。实验数据为在当当网摄影摄像商品区发表过评论的评论员的所有评论信息。实验结果通过人工评判和计算NDCG(normalize discounted cumulative gain)值的方法来检验,实验结果准确有效。 相似文献
10.
目前,针对微博领域的谣言检测方法主要基于微博正文,同时辅以用户评论特征、传播特征等信息进行判定。然而已有方法没有考虑用户评论质量会直接影响谣言检测的性能,质量低的评论甚至会引入无用甚至负面的特征,进而对谣言检测的性能带来更大的影响。针对该问题,基于用户评论和谣言检测的关联性,首次提出一种考虑评论有效性,并基于多任务联合学习的谣言检测方法。首先将谣言检测作为主任务,用户评论相关性检测为辅助任务;然后采用门控机制和注意力机制过滤和选择有效的用户评论特征;最后基于自主构建的3万条疫情微博谣言数据集进行实验。实验结果表明,对用户评论进行筛选不仅可以提升谣言检测性能,还能对用户评论质量进行判定。 相似文献
11.
Web spam是指通过内容作弊和网页间链接作弊来欺骗搜索引擎,从而提升自身搜索排名的作弊网页,它干扰了搜索结果的准确性和相关性。提出基于Co-Training模型的Web spam检测方法,使用了网页的两组相互独立的特征——基于内容的统计特征和基于网络图的链接特征,分别建立两个独立的基本分类器;使用Co-Training半监督式学习算法,借助大量未标记数据来改善分类器质量。在WEB SPAM-UK2007数据集上的实验证明:算法改善了SVM分类器的效果。 相似文献
12.
随着互联网技术的发展,邮件作为通信和传输文件的方式越来越普遍,伴随着垃圾邮件也出现在工作中。垃圾邮件对企业和用户的危害极大,该文主要讨论垃圾邮件的检测技术和绕过技术。 相似文献
13.
14.
15.
一种互联网垃圾邮件综合过滤方案 总被引:1,自引:0,他引:1
垃圾邮件是互联网上亟待解决的问题。介绍了几种典型的垃圾邮件过滤技术,提出了一种结合邮件过滤和病毒检测技术、可以个性化定制过滤需求的综合过滤方案。相比于已有的方案,文中提出的方案具有同时检测病毒、过滤垃圾邮件和个性化过滤的优点,可以更加有效地解决邮件安全和个性化过滤的问题。 相似文献
16.
17.
目前的产品垃圾评论识别方法只考虑评论特征的选取,忽略了评论数据集的不平衡性。因此该文提出基于随机森林的产品垃圾评论识别方法,即对样本中的大、小类有放回的重复抽取同样数量样本或者给大、小类总体样本赋予同样的权重以建立随机森林模型。通过对亚马逊数据集的实验结果表明,基于随机森林的产品评论识别方法优于其他基线方法。 相似文献