首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
A highly robust position controller for brushless direct drive servo motors (BLDDSM) is presented using a new improved variable structure system with an integral-augmented sliding surface. With the proposed technique, the reaching phase is completely removed by the integral sliding surface. The dynamics of its ideal sliding mode is analytically obtained from a given initial condition to the origin without any reaching phase. In order to choose a suitable integral sliding surface, the optimal regulator theory is effectively applied. Moreover, the suggested control technique can exhibit the output response identical to that previously designed in the integral sliding surface for all the load variations and parameter uncertainties. The usefulness of the proposed algorithm is illustrated through the comparative experiment studies on the position controls of BLDDSM under load variations.  相似文献   

2.
针对一类含有非线性不确定的奇异系统, 提出了一种面向性能的鲁棒控制器. 控制器由3部分组成: 积分滑模控制、附加的非线性控制及复合非线性反馈控制. 积分滑模控制可将匹配不确定完全抵消并使系统轨迹进入理想滑模; 附加的非线性控制用来抑制理想滑动模态上非匹配不确定对系统稳定性和性能的影响; 复合非线性反馈控制则保证闭环系统输出按性能要求渐近地跟踪参考输入信号. 最后通过算例说明所提算法的有效性.  相似文献   

3.
对迭代初值为任意值的工业机器人轨迹跟踪控制系统,提出了一种基于滑模面的非线性迭代学习控制算法,使机器人轨迹能快速、精确跟踪上期望轨迹。基于有限时间收敛原理,构建了关于机器人轨迹跟踪误差的迭代滑模面,在滑模面内,机器人轨迹跟踪误差在预定时间内收敛到零。设计了基于滑模面的迭代学习控制算法,理论证明了随着迭代次数的增加,处于任意初态的轨迹将一致收敛到滑模面内,解决了迭代学习中的任意初值问题。数值仿真验证了该算法的有效性和抗干扰能力。  相似文献   

4.
This note presents a new nonlinear integral-type sliding surface which incorporates a virtual nonlinear nominal control to achieve prescribed specifications. First, the plant with matched uncertainties is considered. The resultant closed-loop system during ideal sliding mode behaves exactly like the nominal plant under the nonlinear nominal control, which completely ifies the matched uncertainties and consequently satisfies the prescribed specifications. Second, the stability analysis of the proposed sliding mode for the systems with unmatched uncertainties is performed to exploit the stability conditions. Numerical results demonstrate the validity of the proposed concept.  相似文献   

5.
In this paper, a novel robust adaptive trajectory tracking control scheme with prescribed performance is developed for underactuated autonomous underwater vehicles (AUVs) subject to unknown dynamic parameters and disturbances. A simple error mapping function is proposed in order to guarantee that the trajectory tracking error satisfies the prescribed performance. A novel additional control based on Nussbaum function is proposed to handle the underactuation of AUVs. The compounded uncertain item caused by the unknown dynamic parameters and disturbances is transformed into a linear parametric form with only single unknown parameter called virtual parameter. On the basis of the above, a novel robust adaptive trajectory tracking control law is developed using dynamic surface control technique, where the adaptive law online provides the estimation of the virtual parameter. Strict stability analysis indicates that the designed control law ensures uniform ultimate boundedness of the AUV trajectory tracking closed‐loop control system with prescribed tracking performance. Simulation results on an AUV in two different disturbance cases with dynamic parameter perturbation verify the effectiveness of our adaptive trajectory tracking control scheme.  相似文献   

6.
This paper focuses in the design of a new adaptive sensorless robust control to improve the trajectory tracking performance of induction motors. The proposed design employs the so‐called vector (or field oriented) control theory for the induction motor drives, being the designed control law based on an integral sliding‐mode algorithm that overcomes the system uncertainties. This sliding‐mode control law incorporates an adaptive switching gain in order to avoid the need of calculating an upper limit for the system uncertainties. The proposed design also includes a new method in order to estimate the rotor speed. In this method, the rotor speed estimation error is presented as a first‐order simple function based on the difference between the real stator currents and the estimated stator currents. The stability analysis of the proposed controller under parameter uncertainties and load disturbances is provided using the Lyapunov stability theory. The simulated results show, on the one hand that the proposed controller with the proposed rotor speed estimator provides high‐performance dynamic characteristics, and on the other hand that this scheme is robust with respect to plant parameter variations and external load disturbances. Finally, experimental results show the performance of the proposed control scheme. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
针对具有未知外界扰动和系统不确定性集总未知非线性的四旋翼飞行器,提出了一种采用自适应不确定性补偿器的自适应动态面轨迹跟踪方法.通过将四旋翼飞行器系统分解为位置、欧拉角和角速率3个动态子系统,使各子系统虚拟控制器设计能充分考虑欠驱动约束;结合动态面控制技术,通过采用一阶低通滤波器,避免对虚拟控制信号求导;进而设计自适应不确定性补偿器,处理未知外界扰动和系统不确定性,最终确保闭环控制系统的稳定性、跟踪误差一致最终有界和系统所有状态信号有界.仿真研究和实验结果验证了本文提出控制方法的有效性和优越性.  相似文献   

8.
This paper discusses the problem of adaptive sliding mode trajectory tracking control for wheeled mobile robots in the presence of external disturbances and inertia uncertainties. A new fast nonsingular terminal sliding mode surface without any constraint is proposed, which not only avoids singularity, but also retains the advantages of sliding mode control. In order to implement the trajectory tracking mission, the error dynamic system is divided into a second-order subsystem and a third-order one. First, an adaptive fast nonsingular terminal sliding mode control law of the angular velocity is constructed for stabilising the second-order subsystem in finite time. Then, another adaptive fast nonsingular terminal sliding mode control law of the linear velocity is designed to guarantee the stability of the third-order subsystem. Finally, a simulation example is provided to demonstrate the validity of the proposed control scheme.  相似文献   

9.
The problem of finite‐time tracking control is studied for uncertain nonlinear mechanical systems. To achieve finite‐time convergence of tracking errors, a simple linear sliding surface based on polynomial reference trajectory is proposed to enable the trajectory tracking errors to converge to zero in a finite time, which is assigned arbitrarily in advance. The sliding mode control technique is employed in the development of the finite‐time controller to guarantee the excellent robustness of the closed‐loop system. The proposed sliding mode scheme eliminates the reaching phase problem, so that the closed‐loop system always holds the invariance property to parametric uncertainties and external disturbances. Lyapunov stability analysis is performed to show the global finite‐time convergence of the tracking errors. A numerical example of a rigid spacecraft attitude tracking problem demonstrates the effectiveness of the proposed controller.  相似文献   

10.
Combining sliding mode control method with radial basis function neural network (RBFNN), this paper proposes a robust adaptive control scheme based on backstepping design for re-entry attitude tracking control of near space hypersonic vehicle (NSHV) in the presence of parameter variations and external disturbances. In the attitude angle loop, a robust adaptive virtual control law is designed by using the adaptive method to estimate the unknown upper bound of the compound uncertainties. In the angular velocity loop, an adaptive sliding mode control law is designed to suppress the effect of parameter variations and external disturbances. The main benefit of the sliding mode control is robustness to parameter variations and external disturbances. To further improve the control performance, RBFNNs are introduced to approximate the compound uncertainties in the attitude angle loop and angular velocity loop, respectively. Based on Lyapunov stability theory, the tracking errors are shown to be asymptotically stable. Simulation results show that the proposed control system attains a satisfied control performance and is robust against parameter variations and external disturbances.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号