首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
e consider a single-machine batch delivery scheduling and common due date assignment problem. In addition to making decisions on sequencing the jobs, determining the common due date, and scheduling job delivery, we consider the option of performing a rate-modifying activity on the machine. The processing time of a job scheduled after the rate-modifying activity decreases depending on a job-dependent factor. Finished jobs are delivered in batches. There is no capacity limit on each delivery batch, and the cost per batch delivery is fixed and independent of the number of jobs in the batch. The objective is to find a common due date for all the jobs, a location of the rate-modifying activity, and a delivery date for each job to minimize the sum of earliness, tardiness, holding, due date, and delivery cost. We provide some properties of the optimal schedule for the problem and present polynomial algorithms for some special cases.  相似文献   

2.
We study a single-machine group scheduling and job-dependent due window assignment problem in which each job is assigned an individual due window based on a common flow allowance. In the group technology environment, the jobs are divided into groups in advance according to their processing similarities and all the jobs of the same group are processed consecutively in order to improve production efficiency. A sequence-independent machine setup time precedes the processing of the first job of each group. A job completed earlier (later) than its due window will incur an earliness (tardiness) penalty. Our goal is to find the optimal sequence for both the groups and jobs, together with the optimal due window assignment, to minimize the total cost that comprises the earliness and tardiness penalties, and the due window starting time and due window size costs. We give an O(n log n)time algorithm to solve this problem.  相似文献   

3.
In many resource allocation problems in physical or economic systems, a linear resource consumption function is commonly considered, and job processing times are assumed to be fixed parameters. However, the former assumption fails to reflect the law of diminishing returns, and the latter may be controlled by changing the allocation of resources to jobs. Motivated by these observations, we provide a unified model for solving single-machine scheduling problems in which each job's processing time is a function of its starting time and convex resource allocation. The objective is to find the optimal sequence of jobs subject to a limited resource consumption. We first show how this unified model can be useful in solving scheduling problems under due date assignment considerations. We analyze the problem with four different due date assignment methods, and our objective function includes costs for earliness, tardiness and due date assignments. We also consider scheduling problems without involving due date assignment decisions. The objective function is to minimize the makespan, total completion time, total absolute variation in completion times, and total absolute variation in waiting times. We show that several existing well-known problems can be reduced to a special case of our unified model and solved in O(nlogn) time.  相似文献   

4.
This paper deals with a single-machine scheduling problem in which jobs are released in different points in time but delivered to customers in batches. A due window is associated with each job. The objective is to schedule the jobs, to form them into batches and to decide the delivery date of each batch so as to minimize the sum of earliness, tardiness, holding, and delivery costs. A mathematical model of the problem is presented, and a set of dominance properties is established. To solve this NP-hard problem efficiently, a solution method is then proposed by incorporating the dominance properties with an imperialist competitive algorithm. Unforced idleness and forming discontinuous batches are allowed in the proposed algorithm. Moreover, the delivery date of a batch may be decided to be later than the completion time of the last job in the batch. Finally, computational experiments are conducted to evaluate the proposed model and solution procedure, and results are discussed.  相似文献   

5.
We present optimal algorithms for single-machine scheduling problems with earliness criteria and job rejection and compare them with the algorithms for the corresponding problems with tardiness objectives. We present an optimal O(n log n) algorithm for minimizing the maximum earliness on a single machine with job rejection. Our algorithm also solves the bi-criteria scheduling problem is which the objective is to simultaneously minimize the maximum earliness of the scheduled jobs and the total rejection cost of the rejected jobs. We also show that the optimal pseudo-polynomial time algorithm for the total tardiness problem with job rejection can be used to solve the corresponding total earliness problem with job rejection.  相似文献   

6.
We study the problem of scheduling jobs whose processing times are decreasing functions of their starting times. We consider the case of a single machine and a common decreasing rate for the processing times. The problem is to determine an optimal combination of the due date and schedule so as to minimize the sum of due date, earliness and tardiness penalties. We give an O(n log n) time algorithm to solve this problem.  相似文献   

7.
We consider a problem of scheduling n identical nonpreemptive jobs with a common due date on m uniform parallel machines. The objective is to determine an optimal value of the due date and an optimal allocation of jobs onto machines so as to minimize a total cost function, which is the function of earliness, tardiness and due date values. For the problem under study, we establish a set of properties of an optimal solution and suggest a two-phase algorithm to tackle the problem. First, we limit the number of due dates one needs to consider in pursuit of optimality. Next, we provide a polynomial-time algorithm to build an optimal schedule for a fixed due date. The key result is an O(m2 log m) algorithm that solves the main problem to optimality.Scope and purpose: To extend the existing research on cost minimization with earliness, tardiness and due date penalties to the case of uniform parallel machines.  相似文献   

8.
This paper considers the scheduling problem of minimizing earliness–tardiness (E/T) on a single batch processing machine with a common due date. The problem is extended to the environment of non-identical job sizes. First, a mathematical model is formulated, which is tested effectively under IBM ILOG CPLEX using the constraint programming solver. Then several optimal properties are given to schedule batches effectively, and by introducing the concept of ARB (Attribute Ratio of Batch), it is proven that the ARB of each batch should be made as small as possible in order to minimize the objective, designed as the heuristic information for assigning jobs into batches. Based on these properties, a heuristic algorithm MARB (Minimum Attribute Ratio of Batch) for batch forming is proposed, and a hybrid genetic algorithm is developed for the problem under study by combining GA (genetic algorithm) with MARB. Experimental results demonstrate that the proposed algorithm outperforms other algorithms in the literature, both for small and large problem instances.  相似文献   

9.
This paper considers a scheduling problem for parallel burn-in ovens in the semiconductor manufacturing industry. An oven is a batch processing machine with restricted capacity. The batch processing time is set by the longest processing time among those of all the jobs contained in the batch. All jobs are assumed to have the same due date. The objective is to minimize the sum of the absolute deviations of completion times from the due date (earliness–tardiness) of all jobs. We suggest three decomposition heuristics. The first heuristic applies the exact algorithm due to Emmons and Hall (for the nonbatching problem) in order to assign the jobs to separate early and tardy job sets for each of the parallel burn-in ovens. Then, we use job sequencing rules and dynamic programming in order to form batches for the early and tardy job sets and sequence them optimally. The second proposed heuristic is based on genetic algorithms. We use a genetic algorithm in order to assign jobs to each single burn-in oven. Then, after forming early and tardy job sets for each oven we apply again sequencing rules and dynamic programming techniques to the early and tardy jobs sets on each single machine in order to form batches. The third heuristic assigns jobs to the m early job sets and m tardy jobs sets in case of m burn-in ovens in parallel via a genetic algorithm and applies again dynamic programming and sequencing rules. We report on computational experiments based on generated test data and compare the results of the heuristics with known exact solution for small size test instances obtained from a branch and bound scheme.  相似文献   

10.
We study a supply chain scheduling problem in which n jobs have to be scheduled on a single machine and delivered to m customers in batches. Each job has a due date, a processing time and a lateness penalty (weight). To save batch-delivery costs, several jobs for the same customer can be delivered together in a batch, including late jobs. The completion time of each job in the same batch coincides with the batch completion time. A batch setup time has to be added before processing the first job in each batch. The objective is to find a schedule which minimizes the sum of the weighted number of late jobs and the delivery costs. We present a pseudo-polynomial algorithm for a restricted case, where late jobs are delivered separately, and show that it becomes polynomial for the special cases when jobs have equal weights and equal delivery costs or equal processing times and equal setup times. We convert the algorithm into an FPTAS and prove that the solution produced by it is near-optimal for the original general problem by performing a parametric analysis of its performance ratio.  相似文献   

11.
We study scheduling problems with two competing agents, sharing the same machines. All the jobs of both agents have identical processing times and a common due date. Each agent needs to process a set of jobs, and has his own objective function. The objective of the first agent is total weighted earliness–tardiness, whereas the objective of the second agent is maximum weighted deviation from the common due date. Our goal is to minimize the objective of the first agent, subject to an upper bound on the objective value of the second agent. We consider a single machine, and parallel (both identical and uniform) machine settings. An optimal solution in all cases is shown to be obtained in polynomial time by solving a number of linear assignment problems. We show that the running times of the single and the parallel identical machine algorithms are O(nm+3), where n is the number of jobs and m is the number of machines. The algorithm for solving the problem on parallel uniform machine requires O(nm+3m3) time, and under very reasonable assumptions on the machine speeds, is reduced to O(nm+3). Since the number of machines is given, these running times are polynomial in the number of jobs.  相似文献   

12.
In this paper, we consider scheduling of deteriorating jobs on a single machine with slack (SLK) due date assignment, resource allocation, and a rate‐modifying activity. The rate‐modifying activity can change jobs’ processing rates such that the actual processing time of a job depends on whether the job is processed before or after the rate‐modifying activity. In addition, the actual processing time of a job also depends on its position in a processing sequence (i.e., the aging effect) and the amount of resource allocated to it. The objective is to determine the optimal sequence, optimal common flow allowance, optimal resource allocation, and optimal location of the rate‐modifying activity to minimize a total penalty function comprising the earliness, tardiness, common flow allowance, and resource allocation costs. We consider two variants of the problem associated with two different processing time functions and provide a polynomial‐time algorithm to solve each variant.  相似文献   

13.
We consider the problem of scheduling a set of nonsimultaneously available jobs on one machine. Each job has a ready time only at or after which the job can be processed. All the jobs have a common due date, which needs to be determined. The problem is to determine a due date and a schedule so as to minimize a total penalty depending on the earliness, tardiness and due date. We show that this problem is strongly NP-hard and give an efficient algorithm that finds an optimal due date and schedule when either the job sequence is predetermined or all jobs have the same processing time. We also propose three approximation algorithms for the general and special cases together with their experimental analysis.

Scope and purpose

We consider the single machine due date assignment problem for scheduling jobs which are ready for processing at different times. The problem under consideration arises in production planning and scheduling concerning the setting of appropriate due dates for a number of customer orders arriving over time. Most of the earlier publications on this subject assumed that the jobs are ready for processing simultaneously. This assumption is too restrictive for real-life production systems where jobs arrive at different times. We show that the problem with unequal ready times is NP-hard and develop fast heuristic algorithms for it, and exact algorithms for two special cases.  相似文献   

14.
We study a scheduling problem that integrates parallel-batch production with family jobs and job delivery at the same time. The jobs are first processed on an unbounded parallel-batch machine and then delivered in batches to their specified customers by a transportation vehicle. We assume that jobs from different families (customers) cannot be processed together by the batch machine and also transported together by the vehicle. The objective is to minimize the time when the vehicle finishes delivering the last delivery batch to its customer and returns to the machine. We first show that the problem is NP-hard, and then propose for it a heuristic algorithm with a worst-case performance ratio of 3/2.  相似文献   

15.
In this article, the job shop scheduling problem with two batch-processing machines is considered. The machines have limited capacity and the jobs have non-identical job sizes. The jobs are processed in batches and the total size of each batch cannot exceed the machine capacity. The processing times of a job on the two machines are proportional. We show the problem of minimising makespan is NP-hard in the strong sense. Then we provide an approximation algorithm with worst-case ratio no more than 4, and the running time of the algorithm is O(n?log?n). Finally, the performance of the proposed algorithm is tested by different levels of instances. Computational results demonstrate the effectiveness of the algorithm for all the instances.  相似文献   

16.
We study a single-machine scheduling problem in a flexible framework where both job processing times and due dates are decision variables to be determined by the scheduler. The model can also be applied for quoting delivery times when some parts of the jobs may be outsourced. We analyze the problem for two due date assignment methods and a convex resource consumption function. For each due date assignment method, we provide a bicriteria analysis where the first criterion is to minimize the total weighted number of tardy jobs plus due date assignment cost, and the second criterion is to minimize total weighted resource consumption. We consider four different models for treating the two criteria. Although the problem of minimizing a single integrated objective function can be solved in polynomial time, we prove that the three bicriteria models are NP\mathcal{NP}-hard for both due date assignment methods. We also present special cases, which frequently occur in practice, and in which all four models are polynomially solvable.  相似文献   

17.
We study the problem of minimizing the number of late jobs on a single machine where job processing times are known precisely and due dates are uncertain. The uncertainty is captured through a set of scenarios. In this environment, an appropriate criterion to select a schedule is to find one with the best worst-case performance, which minimizes the maximum number of late jobs over all scenarios. For a variable number of scenarios and two distinct due dates over all scenarios, the problem is proved NP-hard in the strong sense and non-approximable in pseudo-polynomial time with approximation ratio less than 2. It is polynomially solvable if the number s of scenarios and the number v of distinct due dates over all scenarios are given constants. An O(nlog?n) time s-approximation algorithm is suggested for the general case, where n is the number of jobs, and a polynomial 3-approximation algorithm is suggested for the case of unit-time jobs and a constant number of scenarios. Furthermore, an O(n s+v?2/(v?1) v?2) time dynamic programming algorithm is presented for the case of unit-time jobs. The problem with unit-time jobs and the number of late jobs not exceeding a given constant value is solvable in polynomial time by an enumeration algorithm. The obtained results are related to a min-max assignment problem, an exact assignment problem and a multi-agent scheduling problem.  相似文献   

18.
This paper studies a bicriteria scheduling problem on a series-batching machine with objective of minimizing makespan and total completion time simultaneously. A series-batching machine is a machine that can handle up to b jobs in a batch and the completion time of all jobs in a batch is equal to the finishing time of the last job in the batch and the processing time of a batch is the sum of the processing times of jobs in the batch. In addition, there is a constant setup time s for each batch. For the problem we can find all Pareto optimal solutions in O(n2) time by a dynamic programming algorithm, where n denotes the number of jobs.  相似文献   

19.
Motivated by applications in batch scheduling of jobs in manufacturing systems and distributed computing, we study two related problems. Given is a set of jobs {J 1,…,J n }, where J j has a processing time p j , and an undirected intersection graph G=({1,…,n},E), with an edge (i,j) whenever the pair of jobs J i and J j cannot be processed in the same batch. We are to schedule the jobs in batches, where each batch completes its processing when the last job in the batch completes execution. The goal is to minimize the sum of job completion times. Our two problems differ in the definition of completion time of a job within a given batch. In the first variant, a job completes its execution when its batch is completed, whereas in the second variant, a job completes execution when its own processing is completed. For the first variant, we show that an adaptation of the greedy set cover algorithm gives a 4-approximation for perfect graphs. For the second variant, we give new or improved approximations for a number of different classes of graphs. The algorithms are of widely different genres (LP, greedy, subgraph covering), yet they curiously share a common feature in their use of randomized geometric partitioning.  相似文献   

20.
In this paper, we have considered a class of single machine job scheduling problems where the objective is to minimize the weighted sum of earliness–tardiness penalties of jobs. The weights are job-independent but they depend on whether a job is early or tardy. The restricted version of the problem where the common due date is smaller than a critical value, is known to be NP-complete. While dynamic programming formulation runs out of memory for large problem instances, depth-first branch-and-bound formulation runs slow for large problems since it uses a tree search space. In this paper, we have suggested an algorithm to optimally solve large instances of the restricted version of the problem. The algorithm uses a graph search space. Unlike dynamic programming, the algorithm can output optimal solutions even when available memory is limited. It has been found to run faster than dynamic programming and depth-first branch-and-bound formulations and can solve much larger instances of the problem in reasonable time. New upper and lower bounds have been proposed and used. Experimental findings are given in detail.Scope and purposeA class of single machine problems arising out of scheduling jobs in JIT environment has been considered in this paper. The objective is to minimize the total weighted earliness–tardiness penalties of jobs. In this paper, we have presented a new algorithm and conducted extensive empirical runs to show that the new algorithm performs much better than the existing approaches in solving large instances of the problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号