共查询到20条相似文献,搜索用时 46 毫秒
1.
基于模糊积分和遗传算法的分类器组合算法 总被引:3,自引:0,他引:3
将多个分类器进行组合能提高分类精度。基于模糊测度的Sugeno和Choquet积分具有理想的特性,因此该文利用其进行分类器组合。然而在实际中难以求得模糊测度。该文利用两种方法求取模糊测度,一是分类器对样本数据的分类能力,另一种是根据遗传算法。这两种方法均考虑了每个分类器对不同类的分类能力不同这一经验知识。实验中对UCI中的几个数据库进行了测试,同时将该组合方法应用于一多传感器融合工件识别系统。测试结果表明了该算法是一种计算简便、精度较高的分类器组合方法。 相似文献
2.
基于遗传算法和模糊积分的多分类器集成 总被引:4,自引:0,他引:4
多分类器联合是解决复杂模式识别问题的有效办法。模糊积分是其中一种多分类器联合方法。但是对于模糊积分。如何计算模糊积分密度是一个尚未解决的问题。本文提出了一种基于模糊积分和遗传算法的分类器集成方法,该方法利用遗传算法计算模糊积分密度函数,再利用模糊积分把分类器输出信息联合起来。实验结果表明,该方法比其他方法能够得到更好的识别性能。 相似文献
3.
本文讨论了多分类器组合中的分类器选择问题,提出一种基于遗传算法的分类器选择算法,此算法可以快速选出有效的分类器参与组合.文中给出了指定分类器数目和任意分类器数目两种情况下分类器选择的算法.最后在CENPARMI手写体数字数据库上验证了我们的算法和结论.实验结果表明,此种分类器选择算法具有较好的性能. 相似文献
4.
5.
6.
7.
骨髓是人体的主要造血器官,骨髓细胞在形态、种类、数目上的变化往往反映出一些重要疾病的信息。对骨髓涂片图像中的细胞进行分类识别和计数,对辅助临床诊断有着重要意义。论文在采用改进型遗传算法进行特征优选的基础上,提出了基于信息熵的成员分类器动态选择和自适应模糊积分分类器融合的骨髓细胞识别算法,进而采用临床病例证明了该识别方法的有效性。 相似文献
8.
基于分类器的图像模糊边缘检测快速算法 总被引:4,自引:2,他引:2
通过对Pal King边缘检测算法的分析,提出了一种新的模糊边缘检测快速算法。首先对图像进行模糊增强,然后依据当前像素及其8-邻域像素的灰度,设计了一个分类器,通过计算相对于该分类器的模糊隶属度函数值,对像素进行边缘分类;最后锐化所得的边缘像素,剔除噪声。算法抛弃了Pal King方法中复杂的迭代运算,同时也克服了Pal King算法中对图像低灰度值边缘信息的丢失,还可以通过设置不同的参数来检测不同细节的边缘。实验结果表明,该快速算法比Pal King算法的边缘检测能力更强,同时运算速度提高了约20倍。 相似文献
9.
基于多维数据雷达图表示的图形分类器研究 总被引:1,自引:0,他引:1
分析介绍了用雷达图表示多维数据以及雷达图的图形特征选取和融合的基本方法,提出了一种基于多维数据雷达图表达的可视化图形分类新方法,该方法用雷达图表示多维数据,不同类别的多维数据对应不同的雷达图形,形成以雷达图形特征为表达主要特征的分类方法。并通过模糊推理方来来自动识别雷达图形,完成自动分类。实验表明,此方法简单、直观,实现了分类过程可视化、分类结果可视化,并且有良好的分类效果。 相似文献
10.
11.
Recent analysis of the XCS classifier system have shown that successful genetic learning strongly depends on the amount of
fitness pressure towards accurate classifiers. Since the traditionally used proportionate selection is dependent on fitness
scaling and fitness distribution, the resulting evolutionary fitness pressure may be neither stable nor sufficiently strong.
Thus, we apply tournament selection to XCS. In particular, we exhibit the weakness of proportionate selection and suggest
tournament selection as a more reliable alternative. We show that tournament selection results in a learning classifier system
that is more parameter independent, noise independent, and more efficient in exploiting fitness guidance in single-step problems
as well as multistep problems. The evolving population is more focused on promising subregions of the problem space and thus
finds the desired accurate, maximally general representation faster and more reliably. 相似文献
12.
多分类问题是机器学习领域中重点研究对象之一,如何将2分类问题的解决方法推广到多分类问题是近几年研的热点.论文利用余弦相似性来刻画样本点的相似度并将余弦相似性引入到2-类分类器,在此基础上构建了肝类分类器,即基于余弦相似性的多类分类器.通过UCI数据集上的实验分析可知,CSMC达到了与现有多类分类器相当的分类性能,为处理多分类问题提供了新思路,具有较好的科研和应用价值. 相似文献
13.
Recommendation systems are going to be an integral part of any E-Business in near future. As in any other E-business, recommendation systems also play a key role in the travel business where the user has to be recommended with a restaurant that best suits him. In general, the recommendations to a user are made based on similarity that exists between the intended user and the other users. This similarity can be calculated either based on the similarity between the user profiles or the similarity between the ratings made by the users. First phase of this work concentrates on experimentally analyzing both these models and get a deep insight of these models. With the lessons learned from the insights, second phase of the work concentrates on developing a deep learning model. The model does not depend on the other user's profile or rating made by them. The model is tested with a small restaurant dataset and the model can predict whether a user likes the restaurant or not. The model is trained with different users and their rating. The system learns from it and in order to predict whether a new user likes or not a restaurant that he/she has not visited earlier, all the data the trained model needed is the rating made by the same user for different restaurants. The model is deployed in a cloud environment in order to extend it to be more realistic product in future. Result evaluated with dataset, it achieves 74.6% is accurate prediction of results, where as existing techniques achieves only 64%. 相似文献
14.
In this paper, a visual object tracking method is proposed based on sparse 2-dimensional discrete cosine transform (2D DCT) coefficients as discriminative features. To select the discriminative DCT coefficients, we give two propositions. The propositions select the features based on estimated mean of feature distributions in each frame. Some intermediate tracking instances are obtained by (a) computing feature similarity using kernel, (b) finding the maximum classifier score computed using ratio classifier, and (c) combinations of both. Another intermediate tracking instance is obtained using incremental subspace learning method. The final tracked instance amongst the intermediate instances are selected by using a discriminative linear classifier learned in each frame. The linear classifier is updated in each frame using some of the intermediate tracked instances. The proposed method has a better tracking performance as compared to state-of-the-art video trackers in a dataset of 50 challenging video sequences. 相似文献
15.
基于特征选取及模糊学习的网页分类方法研究 总被引:2,自引:0,他引:2
www上的信息极大丰富 ,为准确地从网页中提取有用信息 ,发展一个自动的分类器已成为当务之急 .由于文本集中关键词的数量很多 ,分类存在巨大的维度问题 ,并且以往大多数分类器或者工作速度慢 ,或者不具有自学习功能 .本文提出了一种基于相似度的特征选择算法和适应模糊学习算法来实现分类 .特征选择算法用来解决巨大维度问题 ,提高分类速度 ,适应模糊学习算法为分类提供学习人类知识的能力 ,提高准确率 相似文献
16.
论文根据机器学习的思想利用有限离散的方法设计了一种新的实数编码遗传算法——基于子域搜索的遗传算法(SBGA),该算法能够根据学习规则记忆前面搜索过的样本点信息,并利用这些信息指导后续的搜索。理论分析和数值仿真都表明了算法的稳健性,能够消除过早收敛现象,处理复杂约束,避免重复采样等。 相似文献
17.
18.
19.
Different classifiers with different characteristics and methodologies can complement each other and cover their internal weaknesses; so classifier ensemble is an important approach to handle the weakness of single classifier based systems. In this article we explore an automatic and fast function to approximate the accuracy of a given classifier on a typical dataset. Then employing the function, we can convert the ensemble learning to an optimisation problem. So, in this article, the target is to achieve a model to approximate the performance of a predetermined classifier over each arbitrary dataset. According to this model, an optimisation problem is designed and a genetic algorithm is employed as an optimiser to explore the best classifier set in each subspace. The proposed ensemble methodology is called classifier ensemble based on subspace learning (CEBSL). CEBSL is examined on some datasets and it shows considerable improvements. 相似文献
20.
针对传统分类器的泛化性能差、可解释性及学习效率低等问题, 提出0阶TSK-FC模糊分类器.为了将该分类器 应用到大规模数据的分类中, 提出增量式0阶TSK-IFC模糊分类器, 采用增量式模糊聚类算 法(IFCM($c+p$))训练模糊规则参数并通过适当的矩阵变换提升参数学习效率.仿真实验表明, 与FCPM-IRLS模糊分类器、径向基函数神经网 络相比, 所提出的模糊分类器在不同规模数据集中均能保持很好的性能, 且TSK-IFC模糊分类器在大规模数据分类中尤为突出. 相似文献