首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
针对基于支持向量机(Support Vector Machine,SVM)的间歇过程故障诊断准确率低的问题,结合间歇过程的时段特性,提出了一种基于子时段MPCA-SVM的间歇过程在线故障诊断方法。首先,利用多向主成分分析(Multi-way principal component analysis,MPCA)提取出间歇过程正常运行状态下的每个采样点的主成分,将相邻的且具有相同主成分个数的采样点归到同一粗划分时段内,再在每一个粗时段内利用相邻采样点的负载矩阵的角度信息作为相似性判据来细化分时段;其次,对每个时段建立MPCA在线过程监测模型,同时,利用MPCA提取每个时段内各个类型故障的特征,并用特征数据建立SVM故障诊断模型;最后,MPCA监测模型实施监测功能,当检测到故障时,相应时段的SVM故障诊断模型进行诊断。将该方法应用于青霉素发酵过程仿真平台进行验证,该方法相比于不分时段的SVM的故障诊断方法,平均可提高故障诊断准确率11%,实验结果表明了该方法的有效性和可行性。  相似文献   

2.
间歇过程的统计建模与在线监测   总被引:6,自引:1,他引:6  
现代过程工业正逐渐倚重于生产小批量、多品种、高附加值产品的间歇过程.基于多元统计模型的过程监测是保障生产安全和产品质量的重要工具.从间歇过程独特的数据特性出发,将现有的多元统计建模方法进行合理的分类,简要回顾了各类方法的起源、发展及延伸的历程.除了阐述每种方法的基本原理,还详细讨论了各种方法的适用背景,相互关联及优缺点等内容,并对这一领域中依然存在的问题以及研究前景给出中肯的评述.  相似文献   

3.
针对间歇过程时段的切换存在过渡区域,同时,间歇过程数据有着强非线性的特点,提出一种基于时段及过渡区域的KICA间歇过程监测方法。该方法基于MPCA及k-means聚类算法对间歇过程进行子时段划分,并基于第一主元贡献率差值识别时段间的过渡区域,在此基础上,对稳定时段建立统一KICA监测模型,而过渡区域针对各时刻滑动窗口进行KICA建模监测。将该方法应用于青霉素发酵过程在线监测,实验结果表明,相比sub..PCA监测方法,本文基于时段及过渡区域的KICA监测方法能更及时、准确的检测到过渡区域的异常。  相似文献   

4.
间歇过程滑动窗口子时段PCA 建模和在线监测   总被引:2,自引:0,他引:2  
针对在短期内不容易获得充足建模数据的间歇工业过程,提出一种间歇过程监视方法,该方法只需要一次正常间歇操作数据,利用滑动窗口,进行子时段划分、建立初始主元分析(PCA)监测模型,同时提出了基于子时段PCA模型的在线监测算法和一种模型更新策略.通过在注塑过程的成功应用,表明了所提出方法的可行性和有效性.  相似文献   

5.
针对间歇过程的高度复杂性、强非线性、强时段性等特点,提出一种基于核熵成分分析(KECA)特征变量降维,利用烟花算法(FWA)优化支持向量机(SVM)参数的间歇过程分时段故障诊断方法。首先,通过多向核主元分析(MKPCA)进行在线故障监测,输出故障数据;其次,利用K-means分类方法将间歇过程划分为若干个子时段,对故障数据进行KECA特征变量处理,按熵值贡献率来确定选取主元的个数,深层提取特征信息;最后,在各子时段内分别构建FWA优化SVM参数故障诊断模型,将降维处理后的故障数据代入各自所属子时段FWA-SVM诊断模型内进行故障诊断。通过对青霉素仿真实验数据进行各种对比实验研究,验证了该方法的可行性与有效性。  相似文献   

6.
间歇过程的多时段特性直接影响多元统计分析过程建模的准确性。针对间歇过程多时段特性,本文提出一种基于平行因子分解2(PARAFAC2)时段划分的间歇过程故障检测方法,首先对每一个时间片矩阵进行PARAFAC2建模,得到时间片矩阵的模型控制限,然后从间歇过程初始时刻开始,按照时序依次将每个时间片添加到时间块并进行PARAFAC2建模,得到时间块矩阵的模型控制限,通过评估时间片和时间块模型控制限的差异性确定初始时段划分点,并利用时段评价划分指标(PPCI)获取最佳的时段划分结果,最后在所得结果基础上分别对各个时段构建MPCA故障检测模型,实现间歇过程故障检测。所提方法保留了间歇过程三维结构特征和数据的完整性,深入考虑了间歇过程实际运行的时序性,提高了故障检测的准确性。利用青霉素发酵过程仿真实验验证了所提方法的有效性。  相似文献   

7.
针对间歇过程的多时段特性,提出一种生产过程操作时段划分方法.该方法利用反映过程特性变化的负载矩阵以及主成份矩阵的变化实现了间歇过程子时段的两步划分.提出了基于加权负载向量夹角余弦的负载矩阵相似性度量以及基于加权奇异值变化的奇异值矩阵相似性度量方法,以更客观的反映负载矩阵以及奇异值矩阵的相似性,进而更准确的判断过程特性的变化.根据同一操作子时段的过程特性,其负载矩阵和奇异值矩阵相似性较大的特点,实现了生产过程的子时段划分.将基于子时段划分的多向主元分析(MPCA)建模应用于三水箱系统的在线监测和故障变量追溯,实验结果验证了该方法的有效性.  相似文献   

8.
非线性主元分析故障检测和诊断方法及应用   总被引:18,自引:1,他引:17  
赵立杰  王纲  李元 《信息与控制》2001,30(4):359-364
本文针对间歇生产过程的特点,基于多方向主元分析方法(MPCA)和非线性理论,提 出了一种非线性多元统计分析方法——最小窗口方法,该方法突破了MPCA方法单模型、线性 化的建模方式,创新性地构造了适合间歇生产过程特点的多模型结构非线性建模方法,并侧 重于在线间歇过程性能监视和故障诊断的实时性,消除了预报未来测量值带来的误差,提高 了过程性能监视和故障诊断的准确率.本文详细地讨论了最小窗口PCA建模方法、原理、应 用实例.基于该方法设计的聚氯乙烯生产过程性能监视和故障诊断系统充分验证了该方法的 有效性.  相似文献   

9.
肖应旺 《控制工程》2011,18(4):627-631,649
针对基于主元分析(Principal Component Analysis,PCA)的统计过程性能监测法,尽管不依赖于精确的数学模型,然而却限制了其在故障诊断方面的能力问题,在故障重构技术的基础上,研究了基于统计量的故障诊断问题,获得了主元子空间中故障可重构性的理论条件,提出了故障识别指标和诊断算法.通过对双效蒸发过程...  相似文献   

10.
基于数据和知识的工业过程监视及故障诊断综述   总被引:5,自引:0,他引:5  
从复杂工业过程所可能具有的过程特性及数据存取过程中引入的数据特性分析出发,综述了具有复杂数据特性的工业过程的多元统计监视方法,并分别讨论了基于数据和基于知识方法进行故障诊断的优势、进展、适用范围及二者结合的可能.最后探讨了这一领域中值得进一步研究的问题和可能的发展方向.  相似文献   

11.
In industrial manufacturing, most batch processes are inherently multistage/multiphase in nature. To ensure both quality consistency of the manufactured products and safe operation of this kind of batch process, different multivariate statistical process control (MSPC) methods have been proposed in recent years. This paper gives an overview of multistage/multiphase statistical process control methods used for process analysis, monitoring, quality prediction and online quality improvement. Different types of phase divisions and modeling strategies are introduced and the method properties are discussed. For comparisons, a selection guide to these methods for different application purposes is provided. Finally, some promising research directions are suggested based on existing works.  相似文献   

12.
多元统计性能监视和故障诊断技术研究进展   总被引:9,自引:1,他引:9  
综述了多元统计分析方法在线性、非线性、多尺度领域中的理论研究进展.分析和总结了连续生产过程和批量间歇生产过程性能监视和故障诊断的应用情况.最后探讨了这一领域中值得进一步研究的问题和可能的发展方向.􀁱  相似文献   

13.
刘毅 《数字社区&智能家居》2009,5(7):5296-5297,5300
统计过程控制技术作为一种用统计分析方法保证产品质量和生产稳定性的手段,在现代工业生产中的应用日益广泛。阃歇生产过程因其过程变量的时间相关性和变量之间大多存在强非线性关系的特点,采用传统的统计过程控制方法难以满足其对产品高质量的要求。通过多元投影的方法压缩过程变量的维数,在较低维的主元空间对过程进行监控。可以较好的解决上述矛盾。针对间歇过程运行的特点,分析了线性和非线性多元统计过程控制技术的理论和方法。  相似文献   

14.
In this paper an overview is given of statistical process monitoring with the emphasis on batch processes and the possible steps to take for improving this by incorporating external information. First, the general concept of statistical process monitoring of batches is explained. This concept has already been shown to be successful according to the number of references to industrial applications. The performance of statistical process monitoring of batch processes can be enhanced by incorporating external information. Two types of external information can be distinguished: batch-run specific and process specific information. Various examples of both types of external information are given. Several ideas of how to incorporate the external information in model development are discussed. The concept of incorporating process specific information is highlighted by an example of a grey model. This model is applied to a biochemical batch process that is spectroscopically monitored.  相似文献   

15.
To ensure product quality and operation safety, multivariate statistical process control (MSPC) techniques have been applied to batch process monitoring. Batch processes have several important features which should be taken into consideration in statistical monitoring, such as two-dimensional (2D) dynamics along both time and batch axes and multiple operation phases within a batch. In this paper, a multiphase two-dimensional dynamic PCA (2D-DPCA) method is proposed to deal with these characteristics simultaneously. An iterative procedure is designed for phase division, region of support (ROS) determination for each phase and phase 2D-DPCA modeling. The transition regions from phase to phase are also identified and modeled. Then, the phase and transition 2D-DPCA models are utilized in online monitoring. A three-water-tank process with 2D dynamics and a simulated two-phase batch process are used as case studies, to show the effectiveness of the proposed method.  相似文献   

16.
对具有不等长时段的多时段批次过程进行监测是十分重要而且具有一定难度的. 时段在批次间的错位现象导致时间方向的不同过程特性混合在一起, 这给时段分析以及在线应用带来了一系列的问题. 为了解决不等长所带来的问题, 本文提出一种基于不等长时段有序识别及建模的故障检测方法. 该方法的主要贡献包括以下方面:1) 该方法通过步进地衡量过程的变量相关性对模型精度以及监测性能的影响, 自动有序地识别出每个不等长时段; 2) 在每个时段内,通过对不规则的过程数据进行整合建立了时段模型以捕捉不规则的时段特性; 3) 本文提供了一种简单而有效的在线判断新样本隶属时段和监测其运行状态的方法. 最后, 本文通过一个实例–具有不等长批次长度的注塑过程阐述了本方法的有效性.  相似文献   

17.
For the complex batch process with characteristics of unequal batch data length, a novel data-driven batch process monitoring method is proposed based on mixed data features analysis and multi-way kernel entropy component analysis (MDFA-MKECA) in this paper. Combining the mechanistic knowledge, different mixed data features of each batch including statistical and thermodynamics entropy features, are extracted to finish data pre-processing. After that, MKECA is applied to reduce data dimensionality and finally establish a monitoring model. The proposed method is applied to a reheating furnace industry process, and the experimental results demonstrate that the MDFA-MKECA method can reduce the calculated amount and effectively provide on-line monitoring of the batch process.   相似文献   

18.
For multimode batch processes, the conventional modeling methods in general require that sufficient batches should be available for every mode, which, however, cannot be guaranteed in practice. It may be impractical to conduct enough trial runs and wait until sufficient batches are available before development of monitoring models for each mode. Starting from limited batches, how to derive reliable process information and develop monitoring models has been an important question for successful online multimode batch process monitoring. To address this problem, this article proposes a phase analysis and statistical modeling strategy with limited batches. One mode which has obtained sufficient batches is chosen as the reference mode while the other modes which can only get limited batches work as alternative modes. Starting from limited batches, the proposed algorithm addresses two issues, concurrent phase partition and analysis of between-mode relative changes. First, for each alternative mode, generalized time-slices are constructed by combining several consecutive time-slices within a short time region to explore local process correlations. The time-varying characteristics are then concurrently analyzed across modes so that multiple sequential phases are identified simultaneously for all modes. Then phase-representative data units are arranged by variable-unfolding the conventional time-slices for the reference mode and the generalized time-slices for each alternative mode respectively. Between-mode statistical analysis is performed within each phase where the relative changes from the reference mode to each alternative mode are analyzed. From the between-mode perspective, different types of relative variations in each alternative mode are separated and modeled for online monitoring. Starting from limited batches, online batch process monitoring can be conducted, providing reliable fault detection performance. The proposed algorithm is illustrated with a typical multiphase batch process with multiple modes.  相似文献   

19.
Multiple phases/stages with transitions from phase to phase are important characteristics of many batch processes. In order to model and monitor batch processes more accurately and efficiently, such process features are needed to be considered carefully. In this work, an index based on the angles between different principal component analysis (PCA) score spaces is developed to quantify the similarities between PCA models. Phase division algorithm is designed based on this new PCA similarity index, following by a statistical transition identification step. The steady phase ranges and transition ranges are then modeled separately. The transition models can be calculated by solving the optimization problems. Application examples show the advantages of the proposed method on both batch process modeling and online monitoring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号