首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Commercial off-the-shelf (COTS) middleware is now widely used to develop distributed real-time and embedded (DRE) systems. DRE systems are themselves increasingly combined to form systems of systems that have diverse quality of service (QoS) requirements. Earlier generations of COTS middleware, such as Object Request Brokers (ORBs) based on the CORBA 2.x standard, did not facilitate the separation of QoS policies from application functionality, which made it hard to configure and validate complex DRE applications. The new generation of component middleware, such as the CORBA Component Model (CCM) based on the CORBA 3.0 standard, addresses the limitations of earlier generation middleware by establishing standards for implementing, packaging, assembling, and deploying component implementations.There has been little systematic empirical study of the performance characteristics of component middleware implementations in the context of DRE systems. This paper therefore provides four contributions to the study of CCM for DRE systems. First, we describe the challenges involved in benchmarking different CCM implementations. Second, we describe key criteria for comparing different CCM implementations using key black-box and white-box metrics. Third, we describe the design of our CCMPerf benchmarking suite to illustrate test categories that evaluate aspects of CCM implementation to determine their suitability for the DRE domain. Fourth, we use CCMPerf to benchmark CIAO implementation of CCM and analyze the results. These results show that the CIAO implementation based on the more sophisticated CORBA 3.0 standard has comparable DRE performance to that of the TAO implementation based on the earlier CORBA 2.x standard.Arvind S. Krishna is a PhD student in the Electrical Engineering and Computer Science Department at Vanderbilt University and a member of the Institute for Software Integrated Systems. He received his MA in management from the Brila Institute for Technology and Science (BITS), Pilani, India and his MS in computer science from University of California, Irvine. His research interests include patterns, real-time Java technologies for Real-Time Corba, model-integrated QA techniques, and tools for partial evaluation and specialization of middleware. He is a student member of the IEEE and ACM. Contact him at the Inst. for Software Integrated Systems, 2015 Terrace Pl., Nashville, TN 37203.Balachandran Natarajan is a senior staff engineer at the Institute for Software Integrated Systems and a PhD student in electrical engineering and computer science at Vanderbilt University. His research focuses on applying patterns, optimization principles, and frameworks to build high-performance, dependable, and real-time distributed systems. He received his MS in computer science from Washington University. Contact him at the Inst. for Software Integrated Systems, 2015 Terrace Pl., Nashville, TN 37203.Aniruddha Gokhale is an assistant professor in the Electrical Engineering and Computer Science Department at Vanderbilt University and a senior research scientist at the Institute for Software Integrated Systems. His research focuses on real-time component middleware optimizations, distributed systems and networks, model-driven software synthesis applied to component middleware-based distributed systems, and distributed resource management. He received his PhD in computer science from Washington University. Contact him at the Inst. for Software Integrated Systems, 2015 Terrace Pl., Nashville, TN 37203.Douglas C. Schmidt is a professor in the Electrical Engineering and Computer Science Department at Vanderbilt University and a senior research scientist at the Institute for Software Integrated Systems. His research interests include patterns, optimization techniques, and empirical analyses of software frameworks and domain-specific modeling environments that facilitate the development of distributed real-time and embedded middleware and applications running over high-speed networks and embedded system interconnects. He received his PhD in information and computer science at the University of California, Irvine. Contact him at the Inst. for Software Integrated Systems, 2015 Terrace Pl., Nashville, TN 37203.Nanbor Wang is a Research Scientist in the Distributed Technologies Group at the Tech-X Corporation in Boulder, Colorado. He received M.S. and Ph.D. degrees in Computer Science from Washington University in St. Louis, Missouri. While working for his degree, he also worked as a Research Associate in the Center of Distributed Object Computing in the Department of Computer Science where he conducted research on design, implementation and analysis of object-oriented and component-based techniques for development of distributed systems and management of extra-functional concerns. Dr. Wangs work currently focuses on developing and applying middleware techniques, such as CORBA and Grid Computing, for enabling distributed and parallel scientific applications, such as, distributed data analysis, remote visualization and collaboration, and, work-flow management for large-scale scientific applications.Gautam H. Thaker was born in Amdavad, India, in 1955. He holds a BSEE (75) and MSEE (77) from Clemson University, Clemson, SC. He spent the 85-86 academic year at M.I.T. as a visiting researcher. His research interests include analysis, design, construction and validation of real-time, command and control systems. In particular he has focused on interactions between operating systems, networking protocols, and middleware technologies.  相似文献   

2.
Distributed real-time and embedded (DRE) systems in which application requirements and environmental conditions may not be known a priori—or which may vary at run-time—can benefit from an adaptive approach to management of quality-of-service (QoS) to meet key constraints, such as end-to-end timeliness. Moreover, coordinated management of multiple QoS capabilities across multiple layers of applications and their supporting middleware can help to achieve necessary assurances of meeting these constraints.This paper offers two contributions to the study of adaptive DRE computing systems: (1) a case study of our integration of multiple middleware QoS management technologies to manage quality and timeliness of imagery adaptively within a representative DRE avionics system and (2) empirical results and analysis of the impact of that integration on key trade-offs between timeliness and image quality in that system.This work was supported in part by AFRL contract F33615-97-D-1155/0005 (WSOA), NSF ITR CCR-0312859, Siemens, and DARPA/AFRL contracts F33615-03-C-4112, F30602-98-C-0187 and F33615-00-C-1694. Approved for public release, distribution unlimited.Christopher D. Gill is an Assistant Professor in the Department of Computer Science and Engineering at Washington University in St. Louis. He has published over 50 refereed technical articles in leading journals, conferences, workshops, and book series. His research focuses on distributed real-time embedded systems, with particular emphasis on adaptive mresource management, scheduling, and software design and implementation for time-and-space constrained systems. Dr. Gill has chaired numerous workshop and conference program committees, and has participated widely in review panels and standards organizations in the distributed and real-time systems areas. The research he has led has produced several freely available open-source software frameworks including the Kokyu scheduling and dispatching framework and the nORB small-footprint real-time object request broker.Jeanna Gossett joined The Boeing Company in 1999 as a member of Bold Stroke/Open Systems Architecture team. Jeanna has worked on several CRAD projects including Weapon Systems Open Architecture (WSOA) where she was responsible for incorporating quality of service and resource management software technology into the fighter aircraft real-time embedded system application. Jeanna has since joined the F/A-18 New Product Development Mission Systems team. Prior to joining The Boeing Company in 1999, she worked in the telecommunications industry as an embedded systems developer at Ericsson and Siemens AG. Jeanna received a B.S. in Electrical Engineering from Southern Illinois University, Edwardsville and is a 2005 M.B.A. candidate at Washington University in St. Louis.David Corman is a Technical Fellow at the Boeing Company, located in St. Louis, Mo. Dave is the chief scientist for the Network Centric Operations (NCO) thrust in Phantom Works (PW) and is responsible for developing the NCO technology research agenda and investment strategy. He is also the Principle Investigator (PI) for a variety of Air Force and Defense Advanced Research Project Agency (DARPA) programs that are producing technologies for integrating legacy platforms into the emerging Global Information Grid and for autonomous control of unmanned systems. Since joining the former McDonnell-Douglas (now part of the Boeing Company) in 1983, Dave has worked on numerous projects ranging from embedded systems to large C4I and weapon systems. A major focus of Daves career has been on the development of C4I system simulations and in mission planning system development for aircraft and missiles. He has also served as a consultant to many weapon system and C4I programs in St. Louis, Seattle, and California. Prior to joining McDonnell-Douglas, Dave spent five years at the Johns Hopkins University Applied Physics Laboratory. He was the first recipient of a Naval Research Laboratory Fellowship from the University of Maryland—College Park where he received his PhD in Electrical Engineering in 1983.Joseph Loyall is a division scientist at BBN Technologies, where he leads the Distributed Real-time Embedded (DRE) systems research thrust in the Distributed Systems Advanced Middleware Technology group. He is actively involved in developing integrated dynamic resource management capabilities and advanced software engineering using model driven architecture (MDA) approaches, and in applying adaptive behavior to operational embedded systems such as collections of unmanned and manned air vehicles. Dr. Loyall has a Ph.D. and M.S. in computer science from the University of Illinois and a B.S. in computer science from Indiana University. He can be contacted at jloyall@bbn.com.Richard E. Schantz is a principal scientist at BBN Technologies in Cambridge, Mass., where he has been a key contributor to advanced distributed computing R&D for the past 30 years. His research has been instrumental in defining and evolving the concepts underlying middleware since its emergence in the early days of the Internet. He was directly responsible for developing the first operational distributed object computing capability and transitioning it to production use. More recently, he has led research efforts toward developing and demonstrating the effectiveness of middleware support for adaptively managed Quality Of Service control, as principal investigator on a number of key DARPA projects in the areas of adaptive real-time behavior, survivability and advanced software engineering. Schantz received his Ph.D. degree in Computer Science from the State University of New York at Stony Brook, in 1974.Michael Atighetchi is a senior scientist at BBN Technologies and a senior member of the Distributed Systems Advanced Middleware Technology group. His interests include use of adaptation in survivable systems, network and operating system security, and distributed coordination. Contact him at matighet@bbn. comDouglas C. Schmidt (d.schmidt@vanderbilt.edu) is a Professor of Electrical Engineering and Computer Science, Associate Chair of the Computer Science and Engineering program, and a Senior Researcher in the Institute for Software Integrated Systems (ISIS) at Vanderbilt University. He has published over 300 technical papers and books that cover a range of research topics, including patterns, optimization techniques, and empirical analyses of software frameworks and domain-specific modeling environments that facilitate the development of distributed real-time and embedded (DRE) middleware and applications running over high-speed networks and embedded system interconnects. Dr. Schmidt has served as a Deputy Office Director and a Program Manager at DARPA, where he led the national R&D effort on middleware for DRE systems.  相似文献   

3.
4.
Peer-to-peer grid computing is an attractive computing paradigm for high throughput applications. However, both volatility due to the autonomy of volunteers (i.e., resource providers) and the heterogeneous properties of volunteers are challenging problems in the scheduling procedure. Therefore, it is necessary to develop a scheduling mechanism that adapts to a dynamic peer-to-peer grid computing environment. In this paper, we propose a Mobile Agent based Adaptive Group Scheduling Mechanism (MAAGSM). The MAAGSM classifies and constructs volunteer groups to perform a scheduling mechanism according to the properties of volunteers such as volunteer autonomy failures, volunteer availability, and volunteering service time. In addition, the MAAGSM exploits a mobile agent technology to adaptively conduct various scheduling, fault tolerance, and replication algorithms suitable for each volunteer group. Furthermore, we demonstrate that the MAAGSM improves performance by evaluating the scheduling mechanism in Korea@Home. SungJin Choi is a Ph.D. student in the Department of Computer Science and Engineering at Korea University. His research interests include mobile agent, peer-to-peer computing, grid computing, and distributed systems. Mr. Choi received a M.S. in computer science from Korea University. He is a student member of the IEEE. MaengSoon Baik is a senior research member at the SAMSUNG SDS Research & Develop Center. His research interests include mobile agent, grid computing, server virtualization, storage virtualization, and utility computing. Dr. Baik received a Ph.D. in computer science from Korea University. JoonMin Gil is a professor in the Department of Computer Science Education at Catholic University of Daegu, Korea. His recent research interests include grid computing, distributed and parallel computing, Internet computing, P2P networks, and wireless networks. Dr. Gil received his Ph.D. in computer science from Korea University. He is a member of the IEEE and the IEICE. SoonYoung Jung is a professor in the Department of Computer Science Education at Korea University. His research interests include grid computing, web-based education systems, database systems, knowledge management systems, and mobile computing. Dr. Jung received his Ph.D. in computer science from Korea University. ChongSun Hwang is a professor in the Department of Computer Science and Engineering at Korea University. His research interests include distributed systems, distributed algorithms, and mobile computing. Dr. Hwang received a Ph.D. in statistics and computer science from the University of Georgia.  相似文献   

5.
In this paper, it is presented a novel approach for the self-sustained resonant accelerometer design, which takes advantages of an automatic gain control in achieving stabilized oscillation dynamics. Through the proposed system modeling and loop transformation, the feedback controller is designed to maintain uniform oscillation amplitude under dynamic input accelerations. The fabrication process for the mechanical structure is illustrated in brief. Computer simulation and experimental results show the feasibility of the proposed accelerometer design, which is applicable to a control grade inertial sense system. Recommended by Editorial Board member Dong Hwan Kim under the direction of Editor Hyun Seok Yang. This work was supported by the BK21 Project ST·IT Fusion Engineering program in Konkuk University, 2008. This work was supported by the Korea Foundation for International Cooperation of Science & Technology(KICOS) through a grant provided by the Korean Ministry of Education, Science & Technology(MEST) in 2008 (No. K20601000001). Authors also thank to Dr. B.-L. Lee for the help in structure manufacturing. Sangkyung Sung is an Assistant Professor of the Department of Aerospace Engineering at Konkuk University, Korea. He received the M.S and Ph.D. degrees in Electrical Engineering from Seoul National University in 1998 and 2003, respectively. His research interests include inertial sensors, avionic system hardware, navigation filter, and intelligent vehicle systems. Chang-Joo Kim is an Assistant Professor of the Department of Aerospace Engineering at Konkuk University, Korea. He received the Ph.D. degree in Aeronautical Engineering from Seoul National University in 1991. His research interests include nonlinear optimal control, helicopter flight mechanics, and helicopter system design. Young Jae Lee is a Professor of the Department of Aerospace Engineering at Konkuk University, Korea. He received the Ph.D. degree in Aerospace Engineering from the University of Texas at Austin in 1990. His research interests include integrity monitoring of GNSS signal, GBAS, RTK, attitude determination, orbit determination, and GNSS related engineering problems. Jungkeun Park is an Assistant Professor of the Department of Aerospace Engineering at Konkuk University. Dr. Park received the Ph.D. in Electrical Engineering and Computer Science from the Seoul National University in 2004. His current research interests include embedded real-time systems design, real-time operating systems, distributed embedded real-time systems and multimedia systems. Joon Goo Park is an Assistant Professor of the Department of Electronic Engineering at Gyung Book National University, Korea. He received the Ph.D. degree in School of Electrical Engineering from Seoul National University in 2001. His research interests include mobile navigation and adaptive control.  相似文献   

6.
7.
8.
Providing real-time and QoS support to stream processing applications running on top of large-scale overlays is challenging due to the inherent heterogeneity and resource limitations of the nodes and the multiple QoS demands of the applications that must concurrently be met. In this paper we propose an integrated adaptive component composition and load balancing mechanism that (1) allows the composition of distributed stream processing applications on the fly across a large-scale system, while satisfying their QoS demands and distributing the load fairly on the resources, and (2) adapts dynamically to changes in the resource utilization or the QoS requirements of the applications. Our extensive experimental results using both simulations as well as a prototype deployment illustrate the efficiency, performance and scalability of our approach.
Vana Kalogeraki (Corresponding author)Email:

Thomas Repantis   is a PhD candidate at the Computer Science and Engineering Department of the University of California, Riverside. His research interests lie in the area of distributed systems, distributed stream processing systems, middleware, peer-to-peer systems, pervasive and cluster computing. He holds an MSc from the University of California, Riverside and a Diploma from the University of Patras, Greece, and has interned with IBM Research, Intel Research and Hewlett-Packard. Yannis Drougas   is currently a Ph.D. student in the Department of Computer Science and Engineering at University of California, Riverside. He received the Diploma in Electrical and Computer Engineering from Technical University of Crete, Greece in 2003. His research interests include peer-to-peer systems, real-time systems, stream processing systems, resource management and sensor networks. Vana Kalogeraki   is currently an Associate Professor in the Department of Computer Science and Engineering at the University of California, Riverside. She received the Ph.D. in Electrical and Computer Engineering from the University of California, Santa Barbara, in 2000. Previously she was an Assistant Professor in the Department of Computer Science and Engineering at the University of California, Riverside (2002–2008) and held a Research Scientist Position at Hewlett Packard Labs in Palo Alto, CA (2001–2002). Her research interests include distributed systems, peer-to-peer systems, real-time systems, resource management and sensor networks.   相似文献   

9.
This paper addresses the problem of resource allocation for distributed real-time periodic tasks, operating in environments that undergo unpredictable changes and that defy the specification of meaningful worst-case execution times. These tasks are supplied by input data originating from various environmental workload sources. Rather than using worst-case execution times (WCETs) to describe the CPU usage of the tasks, we assume here that execution profiles are given to describe the running time of the tasks in terms of the size of the input data of each workload source. The objective of resource allocation is to produce an initial allocation that is robust against fluctuations in the environmental parameters. We try to maximize the input size (workload) that can be handled by the system, and hence to delay possible (costly) reallocations as long as possible. We present an approximation algorithm based on first-fit and binary search that we call FFBS. As we show here, the first-fit algorithm produces solutions that are often close to optimal. In particular, we show analytically that FFBS is guaranteed to produce a solution that is at least 41% of optimal, asymptotically, under certain reasonable restrictions on the running times of tasks in the system. Moreover, we show that if at most 12% of the system utilization is consumed by input independent tasks (e.g., constant time tasks), then FFBS is guaranteed to produce a solution that is at least 33% of optimal, asymptotically. Moreover, we present simulations to compare FFBS approximation algorithm with a set of standard (local search) heuristics such as hill-climbing, simulated annealing, and random search. The results suggest that FFBS, in combination with other local improvement strategies, may be a reasonable approach for resource allocation in dynamic real-time systems. David Juedes is a tenured associate professor and assistant chair for computer science in the School of Electrical Engineering and Computer Science at Ohio University. Dr. Juedes received his Ph.D. in Computer Science from Iowa State University in 1994, and his main research interests are algorithm design and analysis, the theory of computation, algorithms for real-time systems, and bioinformatics. Dr. Juedes has published numerous conference and journal papers and has acted as a referee for IEEE Transactions on Computers, Algorithmica, SIAM Journal on Computing, Theoretical Computer Science, Information and Computation, Information Processing Letters, and other conferences and journals. Dazhang Gu is a software architect and researcher at Pegasus Technologies (NeuCo), Inc. He received his Ph.D. in Electrical Engineering and Computer Science from Ohio University in 2005. His main research interests are real-time systems, distributed systems, and resource optimization. He has published conference and journal papers on these subjects and has refereed for the Journal of Real-Time Systems, IEEE Transactions on Computers, and IEEE Transactions on Parallel and Distributed Systems among others. He also served as a session chair and publications chair for several conferences. Frank Drews is an Assistant Professor of Electical Engineering and Computer Science at Ohio Unversity. Dr. Drews received his Ph.D. in Computer Science from the Clausthal Unversity of Technolgy in Germany in 2002. His main research interests are resource management for operating systems and real-time systems, and bioinformatics. Dr. Drews has numerous publications in conferences and journals and has served as a reviewer for IEEE Transactions on Computers, the Journal of Systems and Software, and other conferences and Journals. He was Publication Chair for the OCCBIO’06 conference, Guest Editor of a Special Issue of the Journal of Systems and Software on “Dynamic Resource Management for Distributed Real-Time Systems”, organizer of special tracks at the IEEE IPDPS WPDRTS workshops in 2005 and 2006. Klaus Ecker received his Ph.D. in Theoretical Physics from the University of Graz, Austria, and his Dr. habil. in Computer Science from the University of Bonn. Since 1978 he is professor in the Department of Computer Science at the Clausthal University of Technology, Germany, and since 2005 he is visiting professor at the Ohio University. His research interests are parallel processing and theory of scheduling, especially in real time systems, and bioinformatics. Prof. Ecker published widely in the above mentioned areas in well reputed journals and proceedings of international conferences as well. He is also the author of two monographs on scheduling theory. Since 1981 he is organizing annually international workshops on parallel processing. He is associate editor of Real Time Systems, and member of the German Gesellschaft fuer Informatik (GI) and of the Association for Computing Machinery (ACM). Lonnie R. Welch received a Ph.D. in Computer and Information Science from the Ohio State University. Currently, he is the Stuckey Professor of Electrical Engineering and Computer Science at Ohio University. Dr. Welch performs research in the areas of real-time systems, distributed computing and bioinformatics. His research has been sponsored by the Defense Advanced Research Projects Agency, the Navy, NASA, the National Science Foundation and the Army. Dr. Welch has twenty years of research experience in the area of high performance computing. In his graduate work at Ohio State University, he developed a high performance 3-D graphics rendering algorithm, and he invented a parallel virtual machine for object-oriented software. For the past 15 years his research has focused on middleware and optimization algorithms for high performance computing. His research has produced three successive generations of adaptive resource management (RM) middleware for high performance real-time systems. The project has resulted in two patents and more than 150 publications. Professor Welch also collaborates on diabetes research with faculty at Edison Biotechnology Institute and on genomics research with faculty in the Department of Environmental and Plant Biology at Ohio University. Dr. Welch is a member of the editorial boards of IEEE Transactions on Computers, The Journal of Scalable Computing: Practice and Experience, and The International Journal of Computers and Applications. He is also the founder of the International Workshop on Parallel and Distributed Real-time Systems and of the Ohio Collaborative Conference on Bioinformatics. Silke Schomann graduated in 2003 with a M.Sc. in Computer Science from Clausthal University Of Technology, where she has been working as a scientific assistant since then. She is currently working on her Ph.D. thesis in computer science at the same university.  相似文献   

10.
In this paper, a QoS multipath source routing protocol (QoS-MSR) is proposed for ad hoc networks. It can collect QoS information through route discovery mechanism of multipath source routing (MSR) and establish QoS route with reserved bandwidth. In order to reserve bandwidth efficiently, a bandwidth reservation approach called the multipath bandwidth splitting reservation (MBSR) is presented, under which the overall bandwidth request is split into several smaller bandwidth requests among multiple paths. In simulations, the anthors introduce Insignia, an in-bind signaling system that supports QoS in ad hoc networks, and extend it to multipath Insignia (M-Insignia) with QoS-MSR and MBSR. The results show that QoS-MSR routing protocol with the MBSR algorithm can improve the call admission ratio of QoS traffic, the packet delivery ratio, and the end-to-end delay of both best-effort traffic and QoS traffic. Therefore, QoS-MSR with MBSR is an efficient mechanism that supports QoS for ad hoc networks.  相似文献   

11.
QoS Management Through Adaptive Reservations   总被引:5,自引:2,他引:3  
Reservation based (RB) scheduling is a class of scheduling algorithms that is well-suited for a large class of soft real-time applications. They are based on a bandwidth abstraction, meaning that a task is given the illusion of executing on a dedicated slower processor. In this context, a crucial design issue is deciding the bandwidth that each task should receive. The point we advocate is that, in presence of large fluctuations on the computation requirements of the tasks, it can be a beneficial choice to dynamically adapt the bandwidth based on QoS measurements and on the subsequent application of feedback control (adaptive reservations).In this paper, we present two novel contributions to this research area. First, we propose three new control algorithms inspired to the ideas of stochastic control. Second, we present a flexible and modular software architecture for adaptive reservations. An important feature of this architecture is that it is realised by means of a minimally invasive set of modifications to the Linux kernel.This work has been partially supported by the European OCERA IST-2001-35102 and RECSYS IST-2001-32515 projects.Luca Abeni is a Ph.D. in Computer Engineering at the Scuola Superiore SantAnna of Pisa (Italy). He graduated in Computer Engineering at the University of Pisa in 1998, and received a Ph.D. in Computer Engineering at the Scuola SuperioreS. Anna of Pisa in 2002. During 2000 he was a visiting student at the Carnegie Mellon University (Pittsburgh, PA), working with Prof. Ragunathan Rajkumar on resource reservation algorithms for real-time kernels. During 2001 he was a visiting student a Oregon Graduate Institute (Portland, OR) working with Prof. Jonathan Walpole on the support for time-sensitive applications in the Linux kernel. He has been working in Broadsat S.R.L. since 2003, developing audio/video streaming solutions and IPTV applications.Tommaso Cucinotta got the degree in Computer Engineering at the University of Pisa (Italy) in 2000. He got the Ph.D. inComputer Engineering at the Scuola Superiore SantAnna(SSSA) of Pisa in 2004 with a thesis titled Issues in authentication by means of smart-card devices. He held a course on cryptography in the International Master on Software Engineering organized at SSSA in 2002 and 2004. At the moment, he cooperates in research activities at the Scuola Superiore S. Anna in the areas of computer security and Quality of Service control for soft real-time systems.Giuseppe Lipari graduated in Computer Engineering at the University of Pisa in 1996, and received the Ph.D. degree in Computer Engineering from Scuola Superiore SantAnna in 2000. During 1999, he was avisiting student at University of North Carolina at Chapel Hill, collaborating with professor S.K. Baruah and professor K. Jeffay on real-time scheduling. Currently, he is assistant professor of Operating Systems with Scuola Superiore SantAnna. His main research activities are in real-time scheduling theory and its application to real-time operating systems, soft real-time systems for multimedia applications and component-based real-time systems.Luca Marzario is a Ph.D. student in Computer Engineering at the Scuola Superiore S. Anna of Pisa, Italy. In 2002, he graduated in Computer Engineering at University of Pisa. His main research interest include real-time systems scheduling, aperiodic service mechanism, feedback-scheduling, QoS in multimedia systems, Linux kernel and Real Time Linux executives (RTAI, RTLinux).Luigi Palopoli graduated in Control Engineering at the University of Pisa in 1998 and received his Ph.D. degree in Computer Engineering in 2002 from the Scuola Superiore S. Anna, Pisa. During 2001 he was a visiting scholar at the Department of EECS, University of California at Berkeley, where he worked on design techniques for real-time controllers under the supervision of Professor Alberto Sangiovanni-Vincentelli. He is currently Assistant Professor at the Scuola Superiore S. Anna (Pisa). His main research activities include Quality of Service control, control of systems under communication and computation constraints and design of embedded systems.  相似文献   

12.
Timing constraints for radar tasks are usually specified in terms of the minimum and maximum temporal distance between successive radar dwells. We utilize the idea of feasible intervals for dealing with the temporal distance constraints. In order to increase the freedom that the scheduler can offer a high-level resource manager, we introduce a technique for nesting and interleaving dwells online while accounting for the energy constraint that radar systems need to satisfy. Further, in radar systems, the task set changes frequently and we advocate the use of finite horizon scheduling in order to avoid the pessimism inherent in schedulers that assume a task will execute forever. The combination of feasible intervals and online dwell packing allows modular schedule updates whereby portions of a schedule can be altered without affecting the entire schedule, hence reducing the complexity of the scheduler. Through extensive simulations we validate our claims of providing greater scheduling flexibility without compromising on performance when compared with earlier work based on templates constructed offline. We also evaluate the impact of two parameters in our scheduling approach: the template length (or the extent of dwell nesting and interleaving) and the length of the finite horizon. Sathish Gopalakrishnan is a visting scholar in the Department of Computer Science, University of Illinois at Urbana-Champaign, where he defended his Ph.D. thesis in December 2005. He received an M.S. in Applied Mathematics from the University of Illinois in 2004 and a B.E. in Computer Science and Engineering from the University of Madras in 1999. Sathish’s research interests concern real-time and embedded systems, and the design of large-scale reliable systems. He received the best student paper award for his work on radar dwell scheduling at the Real-Time Systems Symposium 2004. Marco Caccamo graduated in computer engineering from the University of Pisa in 1997 and received the Ph.D. degree in computer engineering from the Scuola Superiore S. Anna in 2002. He is an Assistant Professor of the Department of Computer Science at the University of Illinois. His research interests include real-time operating systems, real-time scheduling and resource management, wireless sensor networks, and quality of service control in next generation digital infrastructures. He is recipient of the NSF CAREER Award (2003). He is a member of ACM and IEEE. Chi-Sheng Shih is currently an assistant professor at the Graduate Institute of Networking and Multimedia and Department of Computer Science and Information Engineering at National Taiwan University since February 2004. He received the B.S. in Engineering Science and M.S. in Computer Science from National Cheng Kung University in 1993 and 1995, respectively. In 2003, he received his Ph.D. in Computer Science from the University of Illinois at Urbana-Champaign. His main research interests are embedded systems, hardware/software codesign, real-time systems, and database systems. Specifically, his main research interests focus on real-time operating systems, real-time scheduling theory, embedded software, and software/hardware co-design for system-on-a-chip. Chang-Gun Lee received the B.S., M.S. and Ph.D. degrees in computer engineering from Seoul National University, Korea, in 1991, 1993 and 1998, respectively. He is currently an Assistant Professor in the Department of Electrical Engineering, Ohio State University, Columbus. Previously, he was a Research Scientist in the Department of Computer Science, University of Illinois at Urbana-Champaign from March 2000 to July 2002 and a Research Engineer in the Advanced Telecomm. Research Lab., LG Information & Communications, Ltd. from March 1998 to February 2000. His current research interests include real-time systems, complex embedded systems, QoS management, and wireless ad-hoc networks. Chang-Gun Lee is a member of the IEEE Computer Society. Lui Sha graduated with the Ph.D. degree from Carnegie-Mellon University in 1985. He was a Member and then a Senior Member of Technical Staff at Software Engineering Institute (SEI) from 1986 to 1998. Since Fall 1998, he has been a Professor of Computer Science at the University of Illinois at Urbana Champaign, and a Visiting Scientist of the SEI. He was the Chair of IEEE Real Time Systems Technical Committee from 1999 to 2000, and has served on its Executive Committee since 2001. He was a member of National Academy of Science’s study group on Software Dependability and Certification from 2004 to 2005, and is an IEEE Distinguished Visitor (2005 to 2007). Lui Sha is a Fellow of the IEEE and the ACM.  相似文献   

13.
This paper discusses aspects of dependability of real-time communication. In particular, we consider timing behaviour under fault conditions for Controller Area Network (CAN) and the extension Time-triggered CAN (TTCAN) based on a time-driven schedule. We discuss the differences between these buses and their behaviour under electromagnetic interference. We present response timing analyses for CAN and TTCAN in the presence of transient network faults using a probabilistic fault model where random faults from electromagnetic interference occur. The CAN analysis provides a probability distribution of worst case response times for message frames. The results indicate that CAN may generally provide a higher probability of delivering messages on time than TTCAN. The CAN analysis result is used to discuss an approach to implementing a bus guardian for event-triggered systems.Ian Broster is a research associate at the University of York, his research includes real-time communication and work on the CAN protocol. Current research focuses on next-generation flexible scheduling for real-time operating systems. His research interests include probabilistic analysis, timing analysis of non-deterministic systems, flexible scheduling, real-time communication, simulation and modelling. He received his M.Eng. degree in 1999 and a Ph.D. in 2003 for his work on flexible real-time communication at the University of York, U.K.Alan Burns has worked for many years on a number of different aspects of real-time systems engineering. He graduated in 1974 in Mathematics from Sheffield University; he then took a D.Phil, in the Computer Science Department at the University of York. After a short period of employment at UKAEA Research Centre, Harwell, he was appointed to a lectureship at Bradford University in 1979. He was subsequently promoted to Senior Lecturer in 1986. In January 1990 he took up a Readership at the University of York in the Computer Science Department. During 1994 he was promoted to a Personal Chair. In 1999 he became Head of the Computer Science Department at York.Guillermo Rodríguez-Navas holds a degree in Telecommunication Engineering by the University of Vigo, Spain. He is currently doing a Ph.D. in Computer Science at the University of the Balearic Islands, Spain. He is also a member of the System, Robotics and Vision (SRV) research group at this university. His research is focused on dependable and real-time distributed embedded systems. In particular, he has addressed various issues related to the Controller Area Network (CAN) field bus, such as fault tolerance, clock synchronization and response time analysis.  相似文献   

14.
Information service plays a key role in grid system, handles resource discovery and management process. Employing existing information service architectures suffers from poor scalability, long search response time, and large traffic overhead. In this paper, we propose a service club mechanism, called S-Club, for efficient service discovery. In S-Club, an overlay based on existing Grid Information Service (GIS) mesh network of CROWN is built, so that GISs are organized as service clubs. Each club serves for a certain type of service while each GIS may join one or more clubs. S-Club is adopted in our CROWN Grid and the performance of S-Club is evaluated by comprehensive simulations. The results show that S-Club scheme significantly improves search performance and outperforms existing approaches. Chunming Hu is a research staff in the Institute of Advanced Computing Technology at the School of Computer Science and Engineering, Beihang University, Beijing, China. He received his B.E. and M.E. in Department of Computer Science and Engineering in Beihang University. He received the Ph.D. degree in School of Computer Science and Engineering of Beihang University, Beijing, China, 2005. His research interests include peer-to-peer and grid computing; distributed systems and software architectures. Yanmin Zhu is a Ph.D. candidate in the Department of Computer Science, Hong Kong University of Science and Technology. He received his B.S. degree in computer science from Xi’an Jiaotong University, Xi’an, China, in 2002. His research interests include grid computing, peer-to-peer networking, pervasive computing and sensor networks. He is a member of the IEEE and the IEEE Computer Society. Jinpeng Huai is a Professor and Vice President of Beihang University. He serves on the Steering Committee for Advanced Computing Technology Subject, the National High-Tech Program (863) as Chief Scientist. He is a member of the Consulting Committee of the Central Government’s Information Office, and Chairman of the Expert Committee in both the National e-Government Engineering Taskforce and the National e-Government Standard office. Dr. Huai and his colleagues are leading the key projects in e-Science of the National Science Foundation of China (NSFC) and Sino-UK. He has authored over 100 papers. His research interests include middleware, peer-to-peer (P2P), grid computing, trustworthiness and security. Yunhao Liu received his B.S. degree in Automation Department from Tsinghua University, China, in 1995, and an M.A. degree in Beijing Foreign Studies University, China, in 1997, and an M.S. and a Ph.D. degree in computer science and engineering at Michigan State University in 2003 and 2004, respectively. He is now an assistant professor in the Department of Computer Science and Engineering at Hong Kong University of Science and Technology. His research interests include peer-to-peer computing, pervasive computing, distributed systems, network security, grid computing, and high-speed networking. He is a senior member of the IEEE Computer Society. Lionel M. Ni is chair professor and head of the Computer Science and Engineering Department at Hong Kong University of Science and Technology. Lionel M. Ni received the Ph.D. degree in electrical and computer engineering from Purdue University, West Lafayette, Indiana, in 1980. He was a professor of computer science and engineering at Michigan State University from 1981 to 2003, where he received the Distinguished Faculty Award in 1994. His research interests include parallel architectures, distributed systems, high-speed networks, and pervasive computing. A fellow of the IEEE and the IEEE Computer Society, he has chaired many professional conferences and has received a number of awards for authoring outstanding papers.  相似文献   

15.
Software architecture evaluation involves evaluating different architecture design alternatives against multiple quality-attributes. These attributes typically have intrinsic conflicts and must be considered simultaneously in order to reach a final design decision. AHP (Analytic Hierarchy Process), an important decision making technique, has been leveraged to resolve such conflicts. AHP can help provide an overall ranking of design alternatives. However it lacks the capability to explicitly identify the exact tradeoffs being made and the relative size of these tradeoffs. Moreover, the ranking produced can be sensitive such that the smallest change in intermediate priority weights can alter the final order of design alternatives. In this paper, we propose several in-depth analysis techniques applicable to AHP to identify critical tradeoffs and sensitive points in the decision process. We apply our method to an example of a real-world distributed architecture presented in the literature. The results are promising in that they make important decision consequences explicit in terms of key design tradeoffs and the architecture's capability to handle future quality attribute changes. These expose critical decisions which are otherwise too subtle to be detected in standard AHP results. Liming Zhu is a PHD candidate in the School of Computer Science and Engineering at University of New South Wales. He is also a member of the Empirical Software Engineering Group at National ICT Australia (NICTA). He obtained his BSc from Dalian University of Technology in China. After moving to Australia, he obtained his MSc in computer science from University of New South Wales. His principle research interests include software architecture evaluation and empirical software engineering. Aybüke Aurum is a senior lecturer at the School of Information Systems, Technology and Management, University of New South Wales. She received her BSc and MSc in geological engineering, and MEngSc and PhD in computer science. She also works as a visiting researcher in National ICT, Australia (NICTA). Dr. Aurum is one of the editors of “Managing Software Engineering Knowledge”, “Engineering and Managing Software Requirements” and “Value-Based Software Engineering” books. Her research interests include management of software development process, software inspection, requirements engineering, decision making and knowledge management in software development. She is on the editorial boards of Requirements Engineering Journal and Asian Academy Journal of Management. Ian Gorton is a Senior Researcher at National ICT Australia. Until Match 2004 he was Chief Architect in Information Sciences and Engineering at the US Department of Energy's Pacific Northwest National Laboratory. Previously he has worked at Microsoft and IBM, as well as in other research positions. His interests include software architectures, particularly those for large-scale, high-performance information systems that use commercial off-the-shelf (COTS) middleware technologies. He received a PhD in Computer Science from Sheffield Hallam University. Dr. Ross Jeffery is Professor of Software Engineering in the School of Computer Science and Engineering at UNSW and Program Leader in Empirical Software Engineering in National ICT Australia Ltd. (NICTA). His current research interests are in software engineering process and product modeling and improvement, electronic process guides and software knowledge management, software quality, software metrics, software technical and management reviews, and software resource modeling and estimation. His research has involved over fifty government and industry organizations over a period of 15 years and has been funded from industry, government and universities. He has co-authored four books and over one hundred and twenty research papers. He has served on the editorial board of the IEEE Transactions on Software Engineering, and the Wiley International Series in Information Systems and he is Associate Editor of the Journal of Empirical Software Engineering. He is a founding member of the International Software Engineering Research Network (ISERN). He was elected Fellow of the Australian Computer Society for his contribution to software engineering research.  相似文献   

16.
With the explosive growth of the Internet and World Wide Web comes a dramatic increase in the number of users that compete for the shared resources of distributed system environments. Most implementations of application servers and distributed search software do not distinguish among requests to different web pages. This has the implication that the behavior of application servers is quite unpredictable. Applications that require timely delivery of fresh information consequently suffer the most in such competitive environments. This paper presents a model of quality of service (QoS) and the design of a QoS-enabled information delivery system that implements such a QoS model. The goal of this development is two-fold. On one hand, we want to enable users or applications to specify the desired quality of service requirements for their requests so that application-aware QoS adaptation is supported throughout the Web query and search processing. On the other hand, we want to enable an application server to customize how it should respond to external requests by setting priorities among query requests and allocating server resources using adaptive QoS control mechanisms. We introduce the Infopipe approach as the systems support architecture and underlying technology for building a QoS-enabled distributed system for fresh information delivery. Ling Liu, Ph.D.: She is an associate professor at the College of Computing, Georgia Institute of Technology. She received her Ph.D. from Tilburg University, The Netherlands in 1993. Her research interests are in the area of large-scale data intensive systems and its applications in distributed, mobile, multimedia, and Internet computing environments. Her work has focused on systems support for creating, searching, manipulating, and monitoring streams of information in wide area networked information systems. She has published more than 70 papers in internal journals or international conferences, and has served on more than 20 program committees in the area of data engineering, databases, and knowledge and information management. Calton Pu, Ph. D.: He is a Professor and John P. Imlay, Jr. Chair in Software at the College of Computing, Georgia Institute of Technology. Calton received his Ph.D. from University of Washington in 1986. He leads the Infosphere expedition project, which is building the system software to support the next generation information flow applications. Infosphere research includes adaptive operating system kernels, communications middleware, and distributed information flow applications. His past research included operating system projects such as Synthetix and Microfeedback, extended transaction projects such as Epsilon Serializability, and Internet data management. He has published more than 125 journal and conference papers, and served on more than 40 program committees. Karsten Schwan, Ph.D.: He is a professor in the College of Computing at the Georgia Institute of Technology. He received the M.Sc. and Ph.D. degrees from Carnegie-Mellon University in Pittsburgh, Pennsylvania. He directs the IHPC project for high performance cluster computing at Georgia Tech. His current research addresses the interactive nature of modern high performance applications (i.e., online monitoring and computational steering), the development of efficient and object-based middleware, the operating system support for distributed and parallel programs, and the online configuration of applications for distributed real-time applications and for communication protocols. Jonathan Walpole, Ph.D.: He is a Professor in the Computer Science and Engineering Department at oregon Graduate Institute of Science and Technology. He received his Ph.D. in Computer Science from Lancaster University, U.K. in 1987. His research interests are in the area of adaptive systems software and its application in distributed, mobile, multimedia computing environments. His work has focused on quality of service specification, adaptive resource management and dynamic specialization for enhanced performance, survivability and evolvability of large software systems, and he has published extensively in these areas.  相似文献   

17.
This paper addresses the problem of loop iteration number estimation, applied to linear loops. This is important to statically put an upper bound on the execution time of real-time systems and implement timing constraint verification. In our approach, matrix calculation is applied to derive the analytical equation that holds the number of iterations as a solution, and it is proved that such solution is related to a zero of an exponential function of the eigenvalues. So, the number of iterations turns out to be an implicit variable of the equation, which can be easily exactly calculated for loops depending on few free variables. Francesco Curatelli received the degree in Electronic Engineering and the Ph.D. degree in Microelectronics from the University of Genova, Italy. During the years 1980-85 he worked as a design engineer at Elsag Inc., Genova. Since 1985 he has been working at the Microelectronics group of the Department of Biophysical and Electronic Engineering (DIBE) at the University of Genova, initially as Research assistant and, since 1992, as Professor in Electronics. His research activities concern the study and development of algorithms and design tools for real-time systems, HCI and assistive technology. He is the author of more than 80 papers published in journals, conference proceedings, and books. Leonardo Mangeruca received his master and PhD degrees in Electrical Engineering and Computer Science from the University of Genoa, Italy, between 1995 and 1998. In 1999 he joined PARADES, Roma, Italy, directed by Prof. A.L. Sangiovanni-Vincentelli, where he focused on research activities in System Level Design and Advanced Architectures for Embedded Systems. His interests include formal models and methods for system design, distributed systems, fault-tolerant architectures, embedded software, real-time scheduling. He is involved in numerous cooperations with international research institutions and represents PARADES in several European Projects.  相似文献   

18.
A note on consistency in asynchronous multicaches   总被引:1,自引:1,他引:0  
Summary This note examines and contrasts the choice of finite versus infinite histories as the framework for analysing the behaviour of an asynchronous multicache scheme. Mike Livesey is currently a Lecturer in Computer Science at the University of St. Andrews, Scotland. His research interests are centred on distributed systems, particularly the specification and verification of distributed protocols. Dr. Livesey received a BA in mathematics from Cambridge University in 1970, an MSc in computer science from Essex University in 1973 and a PhD in computer science form St. Andrews University in 1987. He has also taught at other universities in Britain and New Zealand, and been employed by Marconi-Elliott Computer Systems Ltd.  相似文献   

19.
Advances in wireless and mobile computing environments allow a mobile user to access a wide range of applications. For example, mobile users may want to retrieve data about unfamiliar places or local life styles related to their location. These queries are called location-dependent queries. Furthermore, a mobile user may be interested in getting the query results repeatedly, which is called location-dependent continuous querying. This continuous query emanating from a mobile user may retrieve information from a single-zone (single-ZQ) or from multiple neighbouring zones (multiple-ZQ). We consider the problem of handling location-dependent continuous queries with the main emphasis on reducing communication costs and making sure that the user gets correct current-query result. The key contributions of this paper include: (1) Proposing a hierarchical database framework (tree architecture and supporting continuous query algorithm) for handling location-dependent continuous queries. (2) Analysing the flexibility of this framework for handling queries related to single-ZQ or multiple-ZQ and propose intelligent selective placement of location-dependent databases. (3) Proposing an intelligent selective replication algorithm to facilitate time- and space-efficient processing of location-dependent continuous queries retrieving single-ZQ information. (4) Demonstrating, using simulation, the significance of our intelligent selective placement and selective replication model in terms of communication cost and storage constraints, considering various types of queries. Manish Gupta received his B.E. degree in Electrical Engineering from Govindram Sakseria Institute of Technology & Sciences, India, in 1997 and his M.S. degree in Computer Science from University of Texas at Dallas in 2002. He is currently working toward his Ph.D. degree in the Department of Computer Science at University of Texas at Dallas. His current research focuses on AI-based software synthesis and testing. His other research interests include mobile computing, aspect-oriented programming and model checking. Manghui Tu received a Bachelor degree of Science from Wuhan University, P.R. China, in 1996, and a Master's Degree in Computer Science from the University of Texas at Dallas 2001. He is currently working toward the Ph.D. degree in the Department of Computer Science at the University of Texas at Dallas. Mr. Tu's research interests include distributed systems, wireless communications, mobile computing, and reliability and performance analysis. His Ph.D. research work focuses on the dependent and secure data replication and placement issues in network-centric systems. Latifur R. Khan has been an Assistant Professor of Computer Science department at University of Texas at Dallas since September 2000. He received his Ph.D. and M.S. degrees in Computer Science from University of Southern California (USC) in August 2000 and December 1996, respectively. He obtained his B.Sc. degree in Computer Science and Engineering from Bangladesh University of Engineering and Technology, Dhaka, Bangladesh, in November of 1993. Professor Khan is currently supported by grants from the National Science Foundation (NSF), Texas Instruments, Alcatel, USA, and has been awarded the Sun Equipment Grant. Dr. Khan has more than 50 articles, book chapters and conference papers focusing in the areas of database systems, multimedia information management and data mining in bio-informatics and intrusion detection. Professor Khan has also served as a referee for database journals, conferences (e.g. IEEE TKDE, KAIS, ADL, VLDB) and he is currently serving as a program committee member for the 11th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (SIGKDD2005), ACM 14th Conference on Information and Knowledge Management (CIKM 2005), International Conference on Database and Expert Systems Applications DEXA 2005 and International Conference on Cooperative Information Systems (CoopIS 2005), and is program chair of ACM SIGKDD International Workshop on Multimedia Data Mining, 2004. Farokh Bastani received the B.Tech. degree in Electrical Engineering from the Indian Institute of Technology, Bombay, and the M.S. and Ph.D. degrees in Computer Science from the University of California, Berkeley. He is currently a Professor of Computer Science at the University of Texas at Dallas. Dr. Bastani's research interests include various aspects of the ultrahigh dependable systems, especially automated software synthesis and testing, embedded real-time process-control and telecommunications systems and high-assurance systems engineering. Dr. Bastani was the Editor-in-Chief of the IEEE Transactions on Knowledge and Data Engineering (IEEE-TKDE). He is currently an emeritus EIC of IEEE-TKDE and is on the editorial board of the International Journal of Artificial Intelligence Tools, the International Journal of Knowledge and Information Systems and the Springer-Verlag series on Knowledge and Information Management. He was the program cochair of the 1997 IEEE Symposium on Reliable Distributed Systems, 1998 IEEE International Symposium on Software Reliability Engineering, 1999 IEEE Knowledge and Data Engineering Workshop, 1999 International Symposium on Autonomous Decentralised Systems, and the program chair of the 1995 IEEE International Conference on Tools with Artificial Intelligence. He has been on the program and steering committees of several conferences and workshops and on the editorial boards of the IEEE Transactions on Software Engineering, IEEE Transactions on Knowledge and Data Engineering and the Oxford University Press High Integrity Systems Journal. I-Ling Yen received her B.S. degree from Tsing-Hua University, Taiwan, and her M.S. and Ph.D. degrees in Computer Science from the University of Houston. She is currently an Associate Professor of Computer Science at University of Texas at Dallas. Dr. Yen's research interests include fault-tolerant computing, security systems and algorithms, distributed systems, Internet technologies, E-commerce and self-stabilising systems. She has published over 100 technical papers in these research areas and received many research awards from NSF, DOD, NASA and several industry companies. She has served as Program Committee member for many conferences and Program Chair/Cochair for the IEEE Symposium on Application-Specific Software and System Engineering & Technology, IEEE High Assurance Systems Engineering Symposium, IEEE International Computer Software and Applications Conference, and IEEE International Symposium on Autonomous Decentralized Systems. She has also served as a guest editor for a theme issue of IEEE Computer devoted to high-assurance systems.  相似文献   

20.
Coupling represents the degree of interdependence between two software components. Understanding software dependency is directly related to improving software understandability, maintainability, and reusability. In this paper, we analyze the difference between component coupling and component dependency, introduce a two-parameter component coupling metric and a three-parameter component dependency metric. An important parameter in both these metrics is coupling distance, which represents the relevance of two coupled components. These metrics are applicable to layered component-based software. These metrics can be used to represent the dependencies induced by all types of software coupling. We show how to determine coupling and dependency of all scales of software components using these metrics. These metrics are then applied to Apache HTTP, an open-source web server. The study shows that coupling distance is related to the number of modifications of a component, which is an important indicator of component fault rate, stability and subsequently, component complexity.
Srini RamaswamyEmail: Email:

Liguo Yu   received the Ph.D. degree in Computer Science from Vanderbilt University. He is an assistant professor of Computer and Information Sciences Department at Indiana University South Bend. Before joining IUSB, he was a visiting assistant professor at Tennessee Technological University. His research concentrates on software coupling, software maintenance, software reuse, software testing, software management, and open-source software development. Kai Chen   received the Ph.D. degree from the Department of Electrical Engineering and Computer Science at Vanderbilt University. He is working at Google Incorporation. His current research interests include development and maintenance of open-source software, embedded software design, component-based design, model-based design, formal methods and model verification. Srini Ramaswamy   earned his Ph.D. degree in Computer Science in 1994 from the Center for Advanced Computer Studies (CACS) at the University of Southwestern Louisiana (now University of Louisiana at Lafayette). His research interests are on intelligent and flexible control systems, behavior modeling, analysis and simulation, software stability and scalability. He is currently the Chairperson of the Department of Computer Science, University of Arkansas at Little Rock. Before joining UALR, he is the chairman of Computer Science Department at Tennessee Tech University. He is member of the Association of Computing Machinery, Society for Computer Simulation International, Computing Professionals for Social Responsibility and a senior member of the IEEE.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号