首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
针对基本人工蜂群算法容易陷入局部最优和早熟等问题,提出一种改进的人工蜂群算法(ASABC)。利用平均熵机制初始化种群,增加种群的多样性,避免算法陷入早熟;同时,采用自适应调节邻域搜索步长的策略来提高算法的局部搜索能力,提升算法的计算精度;为了平衡算法的全局搜索能力和局部搜索能力,引入自适应比例选择策略来代替人工蜂群算法的适应度比例选择方法。对8个标准测试函数的仿真实验结果表明,与3种常见的智能优化方法相比,改进的算法具有显著的局部搜索能力和较快的收敛速度。  相似文献   

2.
为避免人工蜂群算法陷入早熟,提出一种基于动态搜索策略的人工蜂群算法,新算法改进了人工蜂群算法的搜索策略,将两种不同的搜索策略组合成新的搜索策略,以便动态利用两种不同搜索策略的优点,平衡了算法的局部搜索能力和全局搜索能力。基准函数的仿真实验表明,新算法收敛速度快、求解精度高、鲁棒性较强,适合求解高维复杂的全局优化问题。  相似文献   

3.
针对人工蜂群算法容易陷入局部最优的缺陷,提出一种自适应柯西变异人工蜂群算法.该算法引入自适应因子来扩大蜂群的搜索范围,并利用柯西分布的特点对全局进行搜索,提高了蜂群搜索的普遍性.然后利用随机过程理论,对自适应柯西变异人工蜂群算法进行了理论分析,论证了该算法的收敛性.最后将改进的人工蜂群算法应用到风电功率短期预测模型参数的优化中,与单一支持向量机模型比较,表明该方法拟合精度更高.  相似文献   

4.
毛力  周长喜  吴滨 《计算机科学》2015,42(12):263-267
为了克服人工蜂群算法在求解函数优化问题中所存在的局部搜索能力差、收敛精度低的缺点,提出了一种基于当前最优解的分段搜索策略的人工蜂群算法。该算法中跟随蜂利用由全局当前最优解和个体当前最优解引导的局部搜索策略逐维进行变异,并采用基于“分段思想”的局部搜索策略对蜜源进行贪婪更新,以提高蜜源的更新效率,从而提高了人工蜂群算法的局部搜索能力。6个标准测试函数的仿真实验结果表明,与基本人工蜂群算法相比,改进后的人工蜂群算法在寻优精度和收敛速度上均有明显提高。  相似文献   

5.
具有混沌搜索策略的蜂群优化算法   总被引:7,自引:1,他引:6  
罗钧  李研 《控制与决策》2010,25(12):1913-1916
提出一种改进人工蜂群局部搜索能力的优化算法,对陷入局部最优值的雇佣蜂,使用禁忌表存储其局部极值,并引入混沌序列重新初始化,在迭代中产生局部极值的邻域点,帮助其逃离束缚并快速搜寻到最优解.改进算法有效地结合标准蜂群算法的全局优化能力、禁忌表的记忆能力和混沌局部搜索能力,对经典函数的测试计算表明,改进算法提高r蜂群寻优能力,在收敛速度和精度上均优于标准蜂群算法,适合工程应用中的复杂函数优化问题.  相似文献   

6.
为了更有效地求解复杂的非线性方程组,引入了人工蜂群算法.考虑到人工蜂群算法后期表现出的收敛速度慢、容易陷入局部最优值的缺点,提出了一种新的人工蜂群优化算法( IABC).新算法对工蜂进行邻域搜索产生新解的方法进行了改进,引入了尝试次数,修改了向新食物源靠拢的递进步长,加快了原有算法的收敛速度.试验结果表明,改进算法较好地平衡了全局搜索能力和局部搜索能力,是一种求解非线性方程组的高效算法.  相似文献   

7.
针对批量流水线调度问题,提出了一种改进的人工蜂群算法来优化最大完成时间。该算法运用NEH方法产生初始解,采用混沌遍历的方法生成新的邻域解。为了跳出局部最优,使用最优解的插入扰动来替换一些连续若干步不能改进的解来提高算法的全局搜索能力。采用自适应的局部搜索加强算法的局部搜索能力。仿真试验表明了所得算法的可行性和高效性。  相似文献   

8.
杨琳  孔峰 《自动化仪表》2013,34(1):50-53
为了克服人工蜂群算法存在的早熟收敛、后期收敛速度变慢等缺点,提出了一种基于粒子群优化算法的混合人工蜂群算法(PABC).对陷入局部极值的雇佣蜂,采用粒子群优化算法对其重新进行初始化.粒子群优化算法具有很强的全局搜索性能,能使陷入局部极值的雇佣蜂尽快摆脱局部约束.测试函数的计算结果表明,改进的人工蜂群算法大大提高了蜂群算法的寻优能力,在收敛速度和精度方面均优于基本蜂群算法.  相似文献   

9.
针对标准人工蜂群算法收敛速度慢和易陷入早熟收敛等问题,提出一种快速收敛人工蜂群算法。首先借助反向学习理论初始化种群来提高初始解的分布质量,并在雇佣蜂和跟随蜂阶段引入向量整体扰动搜索方程加快局部搜索;然后为了跳出局部最优,采用一种随机更新搜索策略来增加蜂群多样性以平衡全局探索和局部利用能力;最后通过八个标准测试函数的仿真实验,发现所提出的算法与几个改进的人工蜂群算法相比,具有更快的收敛速度且获得了更高的求解精度,验证了算法的优越性。  相似文献   

10.
针对经典人工蜂群(ABC)算法搜索策略存在搜索机制单一、群体全局搜索与局部搜索运算耦合性较高的问题,提出一种基于混合搜索的多种群人工蜂群(MPABC) 算法。首先,将种群按照适应度值进行排序,得到一个有序队列,进而将其划分为随机子群、核心子群和平衡子群三类有序子群;其次,针对不同子群结合相应的个体选择机制与搜索策略,构建出不同的差异向量;最后,在群体的搜索过程中,通过三类子群实现对具有不同适应度函数值个体的有效控制,来增强群体全局搜索和局部搜索的平衡能力。通过对16个标准测试函数进行仿真实验并与具有可变搜索策略的人工蜂群(ABCVSS)算法、基于选择概率的改进人工蜂群(MABC)算法、基于粒子群策略的多精英人工蜂群(PS-MEABC)算法、基于符号函数的多搜索策略人工蜂群(MSSABC)算法和优化高维复杂函数的改进人工蜂群(IABC)算法共五种典型的蜂群算法进行了对比,实验结果显示MPABC具有较好的优化效果;与ABC算法相比,MPABC在求解高维(100维)复杂问题上的收敛速度提高了约23%,且求解精度更优。  相似文献   

11.
Artificial bee colony (ABC) optimization algorithm is relatively a simple and recent population based probabilistic approach for global optimization. ABC has been outperformed over some Nature Inspired Algorithms (NIAs) when tested over benchmark as well as real world optimization problems. The solution search equation of ABC is significantly influenced by a random quantity which helps in exploration at the cost of exploitation of the search space. In the solution search equation of ABC, there is a enough chance to skip the true solution due to large step size. In order to balance between diversity and convergence capability of the ABC, a new local search phase is integrated with the basic ABC to exploit the search space identified by the best individual in the swarm. In the proposed phase, ABC works as a local search algorithm in which, the step size that is required to update the best solution, is controlled by Golden Section Search approach. The proposed strategy is named as Memetic ABC (MeABC). In MeABC, new solutions are generated around the best solution and it helps to enhance the exploitation capability of ABC. MeABC is established as a modified ABC algorithm through experiments over 20 test problems of different complexities and 4 well known engineering optimization problems.  相似文献   

12.
As a relatively new global optimization technique, artificial bee colony (ABC) algorithm becomes popular in recent years for its simplicity and effectiveness. However, there is still an inefficiency in ABC regarding its solution search equation, which is good at exploration but poor at exploitation. To overcome this drawback, a Gaussian bare-bones ABC is proposed, where a new search equation is designed based on utilizing the global best solution. Furthermore, we employ the generalized opposition-based learning strategy to generate new food sources for scout bees, which is beneficial to discover more useful information for guiding search. A comprehensive set of experiments is conducted on 23 benchmark functions and a real-world optimization problem to verify the effectiveness of the proposed approach. Some well-known ABC variants and state-of-the-art evolutionary algorithms are used for comparison. The experimental results show that the proposed approach offers higher solution quality and faster convergence speed.  相似文献   

13.
Artificial bee colony (ABC) algorithm is a novel biological-inspired optimization algorithm, which has many advantages compared with other optimization algorithm, such as less control parameters, great global optimization ability and easy to carry out. It has proven to be more effective than some evolutionary algorithms (EAs), particle swarm optimization (PSO) and differential evolution (DE) when testing on both benchmark functions and real issues. ABC, however, its solution search equation is poor at exploitation. For overcoming this insufficiency, two new solution search equations are proposed in this paper. They apply random solutions to take the place of the current solution as base vector in order to get more useful information. Exploitation is further improved on the basis of enhancing exploration by utilizing the information of the current best solution. In addition, the information of objective function value is introduced, which makes it possible to adjust the step-size adaptively. Owing to their respective characteristics, the new solution search equations are combined to construct an adaptive algorithm called MTABC. The methods our proposed balance the exploration and exploitation of ABC without forcing severe extra overhead in respect of function evaluations. The performance of the MTABC algorithm is extensively judged on a set of 20 basic functions and a set of 10 shifted or rotated functions, and is compared favorably with other improved ABCs and several state-of-the-art algorithms. The experimental results show that the proposed algorithm has a higher convergence speed and better search ability for almost all functions.  相似文献   

14.
Artificial Bee Colony (ABC) algorithm is a wildly used optimization algorithm. However, ABC is excellent in exploration but poor in exploitation. To improve the convergence performance of ABC and establish a better searching mechanism for the global optimum, an improved ABC algorithm is proposed in this paper. Firstly, the proposed algorithm integrates the information of previous best solution into the search equation for employed bees and global best solution into the update equation for onlooker bees to improve the exploitation. Secondly, for a better balance between the exploration and exploitation of search, an S-type adaptive scaling factors are introduced in employed bees’ search equation. Furthermore, the searching policy of scout bees is modified. The scout bees need update food source in each cycle in order to increase diversity and stochasticity of the bees and mitigate stagnation problem. Finally, the improved algorithms is compared with other two improved ABCs and three recent algorithms on a set of classical benchmark functions. The experimental results show that the our proposed algorithm is effective and robust and outperform than other algorithms.  相似文献   

15.
为解决人工蜂群(ABC)算法收敛速度慢、精度不高和易于陷入局部最优等问题,提出一种增强开发能力的改进人工蜂群算法。一方面,将得出的最优解以两种方式直接引入雇佣蜂搜索公式中,通过最优解指导雇佣蜂的邻域搜索行为,以增强算法的开发或局部搜索能力;另一方面,在旁观蜂搜索公式中结合当前解及其随机邻域进行搜索,以改善算法的全局优化能力。对多个常用基准测试函数的仿真实验结果表明,在收敛速度、精度和全局优化能力等方面,所提算法总体上优于其他类似的ABC算法(例如ABC/best)和集成多种搜索策略的ABC算法(例如ABCVSS(ABC algorithm with Variable Search Strategy)和ABCMSSCE(ABC algorithm with Multi-Search Strategy Cooperative Evolutionary))。  相似文献   

16.
The cuckoo search algorithm (CS) is a simple and effective global optimization algorithm. It has been successfully applied to solve a wide range of real-world optimization problems. In this paper, inspired by the particle swarm optimization (PSO), the proposed algorithm uses the best individuals among the entire population to enhance the convergence rate of the standard cuckoo search algorithm. While the PSO directly uses the global best solution of the population to determine new positions for the particles at the each iteration, agents of the CS do not directly use this information but the global best solution in the CS is stored at the each iteration. The global best solutions are used to add into the Information flow between the nest helps increase global and local search abilities of the new approach. Therefore, in the first component, the neighborhood information is added into the new population to enhance the diversity of the algorithm. In the second component, two new search strategies are used to balance the exploitation and exploration of the algorithm through a random probability rule. In other aspect, our algorithm has a very simple structure and thus is easy to implement. To verify the performance of PSCS, 30 benchmark functions chosen from literature are employed. The results show that the proposed PSCS algorithm clearly outperforms the basic CS and PSO algorithm. Compared with some evolution algorithms (CLPSO, CMA-ES, GL-25, DE, OXDE, ABC, GOABC, FA, FPA, CoDE, BA, BSA, BDS and SDS) from literature, experimental results indicate that the proposed algorithm performs better than, or at least comparable to state-of-the-art approaches from literature when considering the quality of the solution obtained. In the last part, experiments have been conducted on two real-world optimization problems including the spread spectrum radar poly-phase code design problem and the chaotic system. Simulation results demonstrate that the proposed algorithm is very effective.  相似文献   

17.
From the perspective of psychology, a modified artificial bee colony algorithm (ABC, for short) based on adaptive search equation and extended memory (ABCEM, for short) for global optimization is proposed in this paper. In the proposed ABCEM algorithm, an extended memory factor is introduced into store employed bees’ and onlooker bees’ historical information comprising recent food sources, personal best food sources, and global best food sources, and the solution search equation for the employed bees is equipped with adaptive ability. Moreover, a parameter is employed to describe the importance of the extended memory. Furthermore, the extended memory is added to two solution search equations for the employed bees and the onlookers to improve the quality of food source. To evaluate the proposed algorithm, experiments are conducted on a set of numerical benchmark functions. The results show that the proposed algorithm can balance the exploration and exploitation, and can improve the accuracy of optima solutions and convergence speed compared with other current improved ABCs for global optimization in most of the tested functions.  相似文献   

18.
The artificial bee colony (ABC) algorithm is a recently introduced swarm intelligence optimization algorithm based on the foraging behavior of a honeybee colony. However, many problems are encountered in the ABC algorithm, such as premature convergence and low solution precision. Moreover, it can easily become stuck at local optima. The scout bees start to search for food sources randomly and then they share nectar information with other bees. Thus, this paper proposes a global reconnaissance foraging swarm optimization algorithm that mimics the intelligent foraging behavior of scouts in nature. First, under the new scouting search strategies, the scouts conduct global reconnaissance around the assigned subspace, which is effective to avoid premature convergence and local optima. Second, the scouts guide other bees to search in the neighborhood by applying heuristic information about global reconnaissance. The cooperation between the honeybees will contribute to the improvement of optimization performance and solution precision. Finally, the prediction and selection mechanism is adopted to further modify the search strategies of the employed bees and onlookers. Therefore, the search performance in the neighborhood of the local optimal solution is enhanced. The experimental results conducted on 52 typical test functions show that the proposed algorithm is more effective in avoiding premature convergence and improving solution precision compared with some other ABCs and several state-of-the-art algorithms. Moreover, this algorithm is suitable for optimizing high-dimensional space optimization problems, with very satisfactory outcomes.  相似文献   

19.
This paper presents a hybridization of particle swarm optimization (PSO) and artificial bee colony (ABC) approaches, based on recombination procedure. The PSO and ABC are population-based iterative methods. While the PSO directly uses the global best solution of the population to determine new positions for the particles at the each iteration, agents (employed, onlooker and scout bees) of the ABC do not directly use this information but the global best solution in the ABC is stored at the each iteration. The global best solutions obtained by the PSO and ABC are used for recombination, and the solution obtained from this recombination is given to the populations of the PSO and ABC as the global best and neighbor food source for onlooker bees, respectively. Information flow between particle swarm and bee colony helps increase global and local search abilities of the hybrid approach which is referred to as Hybrid approach based on Particle swarm optimization and Artificial bee colony algorithm, HPA for short. In order to test the performance of the HPA algorithm, this study utilizes twelve basic numerical benchmark functions in addition to CEC2005 composite functions and an energy demand estimation problem. The experimental results obtained by the HPA are compared with those of the PSO and ABC. The performance of the HPA is also compared with that of other hybrid methods based on the PSO and ABC. The experimental results show that the HPA algorithm is an alternative and competitive optimizer for continuous optimization problems.  相似文献   

20.
In this paper, a conscious neighborhood-based crow search algorithm (CCSA) is proposed for solving global optimization and engineering design problems. It is a successful improvement to tackle the imbalance search strategy and premature convergence problems of the crow search algorithm. CCSA introduces three new search strategies called neighborhood-based local search (NLS), non-neighborhood based global search (NGS) and wandering around based search (WAS) in order to improve the movement of crows in different search spaces. Moreover, a neighborhood concept is defined to select the movement strategy between NLS and NGS consciously, which enhances the balance between local and global search. The proposed CCSA is evaluated on several benchmark functions and four applied problems of engineering design. In all experiments, CCSA is compared by other state-of-the-art swarm intelligence algorithms: CSA, BA, CLPSO, GWO, EEGWO, WOA, KH, ABC, GABC, and Best-so-far ABC. The experimental and statistical results show that CCSA is very competitive especially for large-scale optimization problems, and it is significantly superior to the compared algorithms. Furthermore, the proposed algorithm also finds the best optimal solution for the applied problems of engineering design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号