首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
本文提出了一个基于流形学习的动作识别框架,用来识别深度图像序列中的人体行为。本文从Kinect设备获得的深度信息中评估出人体的关节点信息,并用相对关节点位置差作为人体特征表达。在训练阶段,本文利用Lapacian eigenmaps(LE)流形学习对高维空间下的训练集进行降维,得到低维隐空间下的运动模型。在识别阶段,本文用最近邻差值方法将测试序列映射到低维流形空间中去,然后进行匹配计算。在匹配过程中,通过使用改进的Hausdorff距离对低维空间下测试序列和训练运动集的吻合度和相似度进行度量。本文用Kinect设备捕获的数据进行了实验,取得了良好的效果;同时本文也在MSR Action3D数据库上进行了测试,结果表明在训练样本较多情况下,本文识别效果优于以往方法。实验结果表明本文所提的方法适用于基于深度图像序列的人体动作识别。  相似文献   

2.
为了梳理深度学习方法在人体动作识别领域的发展脉络,对该领域近年来最具代表性的模型和算法进行了综述。以人体动作识别任务流程为线索,详细阐述了深度学习方法在视频预处理阶段、网络结构上的最新成果及其优缺点。介绍了人体动作识别相关的两类数据集,并选取常用的几种进行具体说明。最后,对人体动作识别未来的研究方向进行了探讨与展望。  相似文献   

3.
刘法旺  贾云得 《软件学报》2008,19(Z1):69-77
提出了一种基于流形学习与隐条件随机场(hidden conditional random fields,简称HCRF)的动作识别方法.算法提取人体剪影作为输入特征,采用有监督的保持邻域嵌入(neighborhood preserving embedding,简称NPE)的子空间学习算法获得高维运动特征的低维流形表示,基于HCRF建模运动特征与动作语义之间的映射关系.在降维过程中,通过保持数据的局部邻接关系,NPE可以获取动作特征在低维流形空间上的本质分布特性.与HMM(hidden Markov model)等产生式模型相比,HCRF侧重从样本数据中抽取共有特征以获取正确的分类边界,不需要假定观测过程条件独立,可以更加自然地对动作的时空邻域关系进行建模.实验结果表明,即便对于特征差异较大或存在噪声干扰的动作序列,算法也能取得较好的识别效果.  相似文献   

4.
目的 为了提高视频中动作识别的准确度,提出基于动作切分和流形度量学习的视频动作识别算法。方法 首先利用基于人物肢体伸展程度分析的动作切分方法对视频中的动作进行切分,将动作识别的对象具体化;然后从动作片段中提取归一化之后的全局时域特征和空域特征、光流特征、帧内的局部旋度特征和散度特征,构造一种7×7的协方差矩阵描述子对提取出的多种特征进行融合;最后结合流形度量学习方法有监督式地寻找更优的距离度量算法提高动作的识别分类效果。结果 对Weizmann公共视频集的切分实验统计结果表明本文提出的视频切分方法具有很好的切分能力,能够作好动作识别前的预处理;在Weizmann公共视频数据集上进行了流形度量学习前后的识别效果对比,结果表明利用流形度量学习方法对动作识别效果提升2.8%;在Weizmann和KTH两个公共视频数据集上的平均识别率分别为95.6%和92.3%,与现有方法的比较表明,本文提出的动作识别方法有更好的识别效果。结论 多次实验结果表明本文算法在预处理过程中动作切分效果理想,描述动作所构造协方差矩阵对动作的表达有良好的多特征融合能力,而且光流信息和旋度、散度信息的加入使得人体各部位的运动方向信息具有了更多细节的描述,有效提高了协方差矩阵的描述能力,结合流形度量学习方法对动作识别的准确性有明显提高。  相似文献   

5.
以基于视频的人体动作识别为核心,首先对传统RGB动作识别领域的算法进行了全面回顾,包括传统算法和基于深度学习的算法,基于RGB视频的动作识别易受背景光照的影响识别精度不高,但有丰富的颜色外观信息;然后对RGB-D动作识别领域的算法进行分析总结,主要分为深度序列、骨骼和多特征融合三个方面,RGB-D视频具有多个模态可以为动作识别提供更多的信息,可以弥补基于RGB视频的不足但也带来了新的挑战;最后对常用数据集和未来可能的发展方向进行了展望。  相似文献   

6.
对基于机器视觉的人体动作识别的成果进行研究,为提高视频数据集中人体动作的识别率,提出一种改进的深度网络模型。采用稠密光流方法处理数据,结合二维卷积神经网络(2DCNN)、三维卷积神经网络(3DCNN)和长短期记忆神经网络(LSTM)对动作特征进行提取,利用Softmax分类器识别分类。通过KTH数据集进行实验对比验证,分析结果表明,改进模型相比其它已有模型具有更高的识别率,动作识别效果更优。  相似文献   

7.
针对人体动作深度视频的四维信息映射到二维空间后,动作分类容易发生混淆的问题,提出一种基于深度学习的人体动作识别方法。首先构建空间结构动态深度图,将深度视频的四维信息映射到二维空间,进行信息降维处理;然后提出基于联合代价函数的深度卷积神经网络,结合交叉熵损失函数与中心损失函数作为联合代价函数,指导卷积层学习到更具分辨力的深度特征,以进行更精确的分类。在MSRDailyActivity3D和SYSU3D HOI两个数据集的实验结果表明,与现有方法相比,该方法识别率得到了较明显的提升,验证了其有效性和鲁棒性。该方法较好地解决了动作分类容易发生混淆的问题。  相似文献   

8.
9.
针对现有基于深度学习的人体动作识别模型参数量大、网络过深过重等问题,提出了一种轻量型的双流融合深度神经网络模型并将该模型应用于人体动作识别。该模型将浅层多尺度网络和深度网络相结合,实现了模型参数量的大幅减少,避免了网络过深的问题。在数据集UCF101和HMDB51上进行实验,该模型在Image Net预训练模式下分别取得了94.0%和69.4%的识别准确率。实验表明,相较于现有大多基于深度学习的人体动作识别模型,该模型大幅减少了参数量,并且仍具有较高的动作识别准确率。  相似文献   

10.
传统的人体骨架动作识别算法采用手动构建拓扑图的方式来建模包含在多个视频帧中的动作序列,并针对性地学习每个视频帧以反映数据变化,这容易造成计算代价大、网络泛化性低和灾难性遗忘等问题.针对上述问题,提出了基于动态拓扑图的人体骨架动作识别算法,使用持续学习思想动态构建人体骨架拓扑图.将具有多关系特性的人体骨架序列数据重新编码...  相似文献   

11.
课堂上对学生听课效果进行评估的重点是捕捉学生听课行为.本系统利用Kinect传感器获取学生听课过程中的彩色、深度、骨骼点图像来分析学生的上课肢体状态、注意力方向,以此反映学生听课状态.同时,系统利用Kinect麦克风阵列采集到的声源信息来统计课堂回答问题的频度和声源位置.通过对上述信息的综合分析,获取学生上课状态的客观指标,从而对课堂教学评估提供数据支撑.  相似文献   

12.
为了提高图像检索的性能,提出了一种基于流行排序的多示例图像检索方法,将分割后的图像表示为多示例的形式,通过给出适合图像在包空间的度量方式,有效结合流行排序和多示例学习的方法来进行图像检索.实验结果表明,采用所提出的方法的检索结果与传统的检索方法相比,检索率得到了明显的提高,检索结果更符合人的视觉习惯.  相似文献   

13.
In this paper, we present a machine learning approach for subject independent human action recognition using depth camera, emphasizing the importance of depth in recognition of actions. The proposed approach uses the flow information of all 3 dimensions to classify an action. In our approach, we have obtained the 2-D optical flow and used it along with the depth image to obtain the depth flow (Z motion vectors). The obtained flow captures the dynamics of the actions in space–time. Feature vectors are obtained by averaging the 3-D motion over a grid laid over the silhouette in a hierarchical fashion. These hierarchical fine to coarse windows capture the motion dynamics of the object at various scales. The extracted features are used to train a Meta-cognitive Radial Basis Function Network (McRBFN) that uses a Projection Based Learning (PBL) algorithm, referred to as PBL-McRBFN, henceforth. PBL-McRBFN begins with zero hidden neurons and builds the network based on the best human learning strategy, namely, self-regulated learning in a meta-cognitive environment. When a sample is used for learning, PBL-McRBFN uses the sample overlapping conditions, and a projection based learning algorithm to estimate the parameters of the network. The performance of PBL-McRBFN is compared to that of a Support Vector Machine (SVM) and Extreme Learning Machine (ELM) classifiers with representation of every person and action in the training and testing datasets. Performance study shows that PBL-McRBFN outperforms these classifiers in recognizing actions in 3-D. Further, a subject-independent study is conducted by leave-one-subject-out strategy and its generalization performance is tested. It is observed from the subject-independent study that McRBFN is capable of generalizing actions accurately. The performance of the proposed approach is benchmarked with Video Analytics Lab (VAL) dataset and Berkeley Multi-modal Human Action Database (MHAD).  相似文献   

14.
提出了一种面向行为识别的拉普拉斯特征映射算法的改进方法.首先,将Kinect提供的关节点数据作为姿态特征,采用Levenstein距离改进流形学习算法中的拉普拉斯特征映射算法,并映射到二维空间得到待识别行为的嵌入空间;其次,结合待识别行为的嵌入空间和训练数据建立先验模型;最后,通过重新设计的粒子动态模型和观察模型,采用粒子滤波算法进行行为识别.实验结果表明,该方法可以对重复动作、遮挡,以及动作幅度和速度都有明显差异的行为进行较好的识别,总体识别率达到92.4%.  相似文献   

15.
人体行为识别的Markov随机游走半监督学习方法   总被引:1,自引:0,他引:1  
针对目前人体行为识别方法大都需要大量有标注样本的问题,提出一种基于Markov随机游走的半监督人体行为识别算法.首先提取序列图像各帧人体区域的网格统计特征,再采用基于对手惩罚策略的竞争神经网络对其进行聚类和编码,将图像序列表示的人体行为变换为符号序列;然后根据行为之间的归一化编辑距离建立已标注行为、未标注行为和类别之间的Markov链,并采用Markov随机游走过程来预测未标注行为的类别;最后采用最大后验概率准则对观测到的未知行为进行分类.对Weizmann数据集中人体行为的识别实验结果表明,该方法是一种有效的人体行为识别方法,在标注样本很少的情况下平均识别精度可以超过80%.  相似文献   

16.
与传统三维激光扫描仪相比, Kinect作为一种新型深度相机, 具有价格低廉、深度数据获取能力强、RGB影像与深度影像同步获取等优势, 然而面对较大室内场景精细建模却存在数据量大、建模范围有限、对硬件环境依赖性强等问题。因此, 在现有单一模型建模基础上, 提出了基于Kinect深度影像的多模型数据融合方法, 实现模型间的自动拼接。最后通过两组实验对提出的数据融合方法进行了验证, 并取得了较好的模型拼接效果。  相似文献   

17.
针对基于视频的手势识别技术对手掌轮廓和指尖信息要求较高的问题,提出了一种基于图像深度信息和人体骨骼信息的手指指尖识别方法和手掌轮廓检测算法。采用微软Kinect摄像头获取深度信息和人体骨骼信息,并将每个骨骼点的三维信息转换成深度图上的二维信息。根据人体骨骼信息快速找到手掌的位置,并利用基于深度阈值的轮廓检测算法将手掌轮廓和弯曲手指轮廓从背景图像中分割出来。利用k曲率算法检测到手指指尖的位置。实验结果证明,该方法可以高效地检测出伸直和弯曲手指的轮廓,识别出人体的手指,并且该方法可在黑暗的环境下进行。  相似文献   

18.
很多经典的人脸识别方法难以适应姿势变化及人脸错位的情形。为了解决这一问题,提出一种基于纹理豪斯多夫距离(THD)的人脸识别算法。将人脸图像的空间量及纹理特征相结合,使其在深入的头部转动和人脸错位中都有很高的容错度。在FERET及Yale两大人脸数据库的实验表明,与其他经典的方法相比较,所提出的方法取得了更好的识别效果。  相似文献   

19.
随着计算机视觉不断发展,人体行为识别在视频监控、视频检索和人机交互等诸多领域中展现出其广泛的应用前景和研究价值。人体行为识别涉及到对图像内容的理解,由于人体姿势复杂多样和背景遮挡的因素导致实际应用的进展缓慢。全面回顾了人体行为识别的发展历程,深入探究了该领域的研究方法,包括传统手工提取特征的方法和基于深度学习的方法,以及最近十分热门的基于图卷积网络(GCN)的方法,并按照所使用的数据类型对这些方法进行了系统的梳理;此外,针对不同的数据类型,分别介绍了一些热门的行为识别数据集,对比分析了各类方法在这些数据集上的性能。最后进行了概括总结,并对未来人体行为识别的研究方向进行了展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号