首页 | 本学科首页   官方微博 | 高级检索  
检索     
共有20条相似文献,以下是第1-20项 搜索用时 937 毫秒

1.  深度区域网络方法的细粒度图像分类  
   翁雨辰  田野  路敦民  李琼砚《中国图象图形学报》,2017年第22卷第11期
   目的 在细粒度视觉识别中,难点是对处于相同层级的大类,区分其具有微小差异的子类,为实现准确的分类精度,通常要求具有专业知识,所以细粒度图像分类为计算机视觉的研究提出更高的要求。为了方便普通人在不具备专业知识和专业技能的情况下能够区分物种细粒度类别,进而提出一种基于深度区域网络的卷积神经网络结构。方法 该结构基于深度区域网络,首先,进行深度特征提取任务,使用VGG16层网络和残差101层网络两种结构作为特征提取网络,用于提取深层共享特征,产生特征映射。其次,使用区域建议网络结构,在特征映射上进行卷积,产生目标区域;同时使用兴趣区域(RoI)池化层对特征映射进行最大值池化,实现网络共享。之后将池化后的目标区域输入到区域卷积网络中进行细粒度类别预测和目标边界回归,最终输出网络预测类别及回归边框点坐标。同时还进行了局部遮挡实验,检测局部遮挡部位对于分类正确性的影响,分析局部信息对于鸟类分类的影响情况。结果 该模型针对CUB_200_2011鸟类数据库进行实验,该数据库包含200种细粒度鸟类类别,11 788幅鸟类图片。经过训练及测试,实现VGG16+R-CNN (RPN)和Res101+R-CNN (RPN)两种结构验证正确率分别为90.88%和91.72%,两种结构Top-5验证正确率都超过98%。本文模拟现实环境遮挡情况进行鸟类局部特征遮挡实验,检测分类效果。结论 基于深度区域网络的卷积神经网络模型,提高了细粒度鸟类图像的分类性能,在细粒度鸟类图像的分类上,具有分类精度高、泛化能力好和鲁棒性强的优势,实验发现头部信息对于细粒度鸟类分类识别非常重要。    

2.  并行交叉的深度卷积神经网络模型  被引次数:1
   汤鹏杰  王瀚漓  左凌轩《中国图象图形学报》,2016年第21卷第3期
   目的 图像分类与识别是计算机视觉领域的经典问题,是图像检索、目标识别及视频分析理解等技术的基础。目前,基于深度卷积神经网络(CNN)的模型已经在该领域取得了重大突破,其效果远远超过了传统的基于手工特征的模型。但很多深度模型神经元和参数规模巨大,训练困难。为此根据深度CNN模型和人眼视觉原理,提出并设计了一种深度并行交叉CNN模型(PCCNN模型)。方法 该模型在Alex-Net基础上,通过两条深度CNN数据变换流,提取两组深度CNN特征;在模型顶端,经过两次混合交叉,得到1024维的图像特征向量,最后使用Softmax回归对图像进行分类识别。结果 与同类模型相比,该模型所提取的特征更具判别力,具有更好的分类识别性能;在Caltech101上top1识别精度达到63%左右,比VGG16高出近5%,比GoogLeNet高出近10%;在Caltech256上top1识别精度达到46%以上,比VGG16高出近5%,比GoogLeNet高出2.6%。结论 PCCNN模型用于图像分类与识别效果显著,在中等规模的数据集上具有比同类其他模型更好的性能,在大规模数据集上其性能有待于进一步验证;该模型也为其他深度CNN模型的设计提供了一种新的思路,即在控制深度的同时,提取更多的特征信息,提高深度模型性能。    

3.  融合图像场景及物体先验知识的图像描述生成模型  
   汤鹏杰  谭云兰  李金忠《中国图象图形学报》,2017年第22卷第9期
   目的 目前基于深度卷积神经网络(CNN)和长短时记忆(LSTM)网络模型进行图像描述的方法一般是用物体类别信息作为先验知识来提取图像CNN特征,忽略了图像中的场景先验知识,造成生成的句子缺乏对场景的准确描述,容易对图像中物体的位置关系等造成误判。针对此问题,设计了融合场景及物体类别先验信息的图像描述生成模型(F-SOCPK),将图像中的场景先验信息和物体类别先验信息融入模型中,协同生成图像的描述句子,提高句子生成质量。方法 首先在大规模场景类别数据集Place205上训练CNN-S模型中的参数,使得CNN-S模型能够包含更多的场景先验信息,然后将其中的参数通过迁移学习的方法迁移到CNNd-S中,用于捕捉待描述图像中的场景信息;同时,在大规模物体类别数据集Imagenet上训练CNN-O模型中的参数,然后将其迁移到CNNd-O模型中,用于捕捉图像中的物体信息。提取图像的场景信息和物体信息之后,分别将其送入语言模型LM-S和LM-O中;然后将LM-S和LM-O的输出信息通过Softmax函数的变换,得到单词表中每个单词的概率分值;最后使用加权融合方式,计算每个单词的最终分值,取概率最大者所对应的单词作为当前时间步上的输出,最终生成图像的描述句子。结果 在MSCOCO、Flickr30k和Flickr8k 3个公开数据集上进行实验。本文设计的模型在反映句子连贯性和准确率的BLEU指标、反映句子中单词的准确率和召回率的METEOR指标及反映语义丰富程度的CIDEr指标等多个性能指标上均超过了单独使用物体类别信息的模型,尤其在Flickr8k数据集上,在CIDEr指标上,比单独基于物体类别的Object-based模型提升了9%,比单独基于场景类别的Scene-based模型提升了近11%。结论 本文所提方法效果显著,在基准模型的基础上,性能有了很大提升;与其他主流方法相比,其性能也极为优越。尤其是在较大的数据集上(如MSCOCO),其优势较为明显;但在较小的数据集上(如Flickr8k),其性能还有待于进一步改进。在下一步工作中,将在模型中融入更多的视觉先验信息,如动作类别、物体与物体之间的关系等,进一步提升描述句子的质量。同时,也将结合更多视觉技术,如更深的CNN模型、目标检测、场景理解等,进一步提升句子的准确率。    

4.  深度卷积神经网络的显著性检测  被引次数:3
   李岳云  许悦雷  马时平  史鹤欢《中国图象图形学报》,2016年第21卷第1期
   目的 显著性检测问题是近年来的研究热点之一,针对许多传统方法都存在着特征学习不足和鲁棒检测效果不好等问题,提出一种新的基于深度卷积神经网络的显著性检测模型.方法 首先,利用超像素的方法聚类相似特征的像素点,仿人脑视皮层细胞提取目标边缘,得到区域和边缘特征.然后,通过深度卷积神经网络学习图像的区域与边缘特征,获取相应的目标检测显著度置信图.最后,将深度卷积神经网络输出的置信度融入到条件随机场,求取能量最小化,实现显著性与非显著性判别,完成显著性检测任务.结果 在两个常用的视觉检测数据库上进行实验,本文算法的检测精度与当前最好的方法相比,在MSAR数据库上检测精度相对提升大约1.5%,在Berkeley数据库上提升效果更加明显,达到了5%.此外,无论是自然场景还是人工建筑场景、大目标与小目标,检测的效果都是最好的.结论 本文融合多特征的深度学习方法与单一浅层人工特征的方法相比更有优势,它避免了手工标定特征所带来的不确定性,具有更好的鲁棒性与普适性,从主观视觉愉悦度和客观检测准确度两方面说明了算法的有效性.    

5.  高分辨卫星图像卷积神经网络分类模型  
   周明非  汪西莉  王磊  陈粉《中国图象图形学报》,2017年第22卷第7期
   目的 卫星图像往往目标、背景复杂而且带有噪声,因此使用人工选取的特征进行卫星图像的分类就变得十分困难。提出一种新的使用卷积神经网络进行卫星图像分类的方案。使用卷积神经网络可以提取卫星图像的高层特征,进而提高卫星图像分类的识别率。方法 首先,提出一个包含六类图像的新的卫星图像数据集来解决卷积神经网络的有标签训练样本不足的问题。其次,使用了一种直接训练卷积神经网络模型和3种预训练卷积神经网络模型来进行卫星图像分类。直接训练模型直接在文章提出的数据集上进行训练,预训练模型先在ILSVRC(the ImageNet large scale visual recognition challenge)-2012数据集上进行预训练,然后在提出的卫星图像数据集上进行微调训练。完成微调的模型用于卫星图像分类。结果 提出的微调预训练卷积神经网络深层模型具有最高的分类正确率。在提出的数据集上,深层卷积神经网络模型达到了99.50%的识别率。在数据集UC Merced Land Use上,深层卷积神经网络模型达到了96.44%的识别率。结论 本文提出的数据集具有一般性和代表性,使用的深层卷积神经网络模型具有很强的特征提取能力和分类能力,且是一种端到端的分类模型,不需要堆叠其他模型或分类器。在高分辨卫星图像的分类上,本文模型和对比模型相比取得了更有说服力的结果。    

6.  遥感图像飞机目标分类的卷积神经网络方法  
   周敏  史振威  丁火平《中国图象图形学报》,2017年第22卷第5期
   目的 遥感图像飞机目标分类,利用可见光遥感图像对飞机类型进行有效区分,对提供军事作战信息有重要意义。针对该问题,目前存在一些传统机器学习方法,但这些方法需人工提取特征,且难以适应真实遥感图像的复杂背景。近年来,深度卷积神经网络方法兴起,网络能自动学习图像特征且泛化能力强,在计算机视觉各领域应用广泛。但深度卷积神经网络在遥感图像飞机分类问题上应用少见。本文旨在将深度卷积神经网络应用于遥感图像飞机目标分类问题。方法 在缺乏公开数据集的情况下,收集了真实可见光遥感图像中的8种飞机数据,按大致4∶1的比例分为训练集和测试集,并对训练集进行合理扩充。然后针对遥感图像与飞机分类的特殊性,结合深度学习卷积神经网络相关理论,有的放矢地设计了一个5层卷积神经网络。结果 首先,在逐步扩充的训练集上分别训练该卷积神经网络,并分别用同一测试集进行测试,实验表明训练集扩充有利于网络训练,测试准确率从72.4%提升至97.2%。在扩充后训练集上,分别对经典传统机器学习方法、经典卷积神经网络LeNet-5和本文设计的卷积神经网络进行训练,并在同一测试集上测试,实验表明该卷积神经网络的分类准确率高于其他两种方法,最终能在测试集上达到97.2%的准确率,其余两者准确率分别为82.3%、88.7%。结论 在少见使用深度卷积神经网络的遥感图像飞机目标分类问题上,本文设计了一个5层卷积神经网络加以应用。实验结果表明,该网络能适应图像场景,自动学习特征,分类效果良好。    

7.  利用双通道卷积神经网络的图像超分辨率算法  被引次数:2
   徐冉  张俊格  黄凯奇《中国图象图形学报》,2016年第21卷第5期
   目的 图像超分辨率算法在实际应用中有着较为广泛的需求和研究。然而传统基于样本的超分辨率算法均使用简单的图像梯度特征表征低分辨率图像块,这些特征难以有效地区分不同的低分辨率图像块。针对此问题,在传统基于样本超分辨率算法的基础上,提出双通道卷积神经网络学习低分辨率与高分辨率图像块相似度进行图像超分辨率的算法。方法 首先利用深度卷积神经网络学习得到有效的低分辨率与高分辨率图像块之间相似性度量,然后根据输入低分辨率图像块与高分辨率图像块字典基元的相似度重构出对应的高分辨率图像块。结果 本文算法在Set5和Set14数据集上放大3倍情况下分别取得了平均峰值信噪比(PSNR)为32.53 dB与29.17 dB的效果。结论 本文算法从低分辨率与高分辨率图像块相似度学习角度解决图像超分辨率问题,可以更好地保持结果图像中的边缘信息,减弱结果中的振铃现象。本文算法可以很好地适用于自然场景图像的超分辨率增强任务。    

8.  分类错误指导的分层B-CNN模型用于细粒度分类  
   沈海鸿  杨兴  汪凌峰  潘春洪《中国图象图形学报》,2017年第22卷第7期
   目的 细粒度分类近年来受到了越来越多研究者的广泛关注,其难点是分类目标间的差异非常小。为此提出一种分类错误指导的分层双线性卷积神经网络模型。方法 该模型的核心思想是将双线性卷积神经网络算法(B-CNN)容易分错、混淆的类再分别进行重新训练和分类。首先,为得到易错类,提出分类错误指导的聚类算法。该算法基于受限拉普拉斯秩(CLR)聚类模型,其核心“关联矩阵”由“分类错误矩阵”构造。其次,以聚类结果为基础,构建了新的分层B-CNN模型。结果 用分类错误指导的分层B-CNN模型在CUB-200-2011、 FGVC-Aircraft-2013b和Stanford-cars 3个标准数据集上进行了实验,相比于单层的B-CNN模型,分类准确率分别由84.35%,83.56%,89.45%提高到了84.67%,84.11%,89.78%,验证了本文算法的有效性。结论 本文提出了用分类错误矩阵指导聚类从而进行重分类的方法,相对于基于特征相似度而构造的关联矩阵,分类错误矩阵直接针对分类问题,可以有效提高易混淆类的分类准确率。本文方法针对比较相近的目标,尤其是有非常相近的目标的情况,通过将容易分错、混淆的目标分组并进行再训练和重分类,使得分类效果更好,适用于细粒度分类问题。    

9.  深度卷积神经网络特征提取用于地表覆盖分类初探  
   张伟  郑柯  唐娉  赵理君《中国图象图形学报》,2017年第22卷第8期
   目的 地表覆盖监测是生态环境变化研究、土地资源管理和可持续发展的重要基础,在全球资源监测、全球变化检测中发挥着重要作用。提高中等分辨率遥感影像地表覆盖分类的精度具有非常重要的意义。方法 近年来,深度卷积神经网络在图像分类、目标检测和图像语义分割等领域取得了一系列突破性的进展,相比于传统的机器学习方法具有更强的特征学习和特征表达能力。基于其优越的特性,本文进行了深度卷积神经网络对中分辨率遥感影像进行特征提取和分类的探索性研究。以GF-1的16 m空间分辨率多光谱影像为实验数据,利用预训练好的AlexNet深度卷积神经网络模型进行特征提取,以SVM为分类器进行分类。分析了AlexNet不同层的特征以及用于提取特征的邻域窗口尺寸对分类结果的影响,并与传统的单纯基于光谱特征和基于光谱+纹理特征的分类结果进行对比分析。结果 结果表明在用AlexNet模型提取特征进行地表覆盖分类时,Fc6全连接层是最有效的特征提取层,最佳的特征提取窗口尺寸为9×9像素,同时利用深度特征得到的总体分类精度要高于其他两种方法。结论 深度卷积神经网络可以提取更精细更准确的地表覆盖特征,得到更高的地表覆盖分类精度,为地表覆盖分类提供了参考价值。    

10.  自上而下注意图分割的细粒度图像分类  
   冯语姗  王子磊《中国图象图形学报》,2016年第21卷第9期
   目的 针对细粒度图像分类中的背景干扰问题,提出一种利用自上而下注意图分割的分类模型。方法 首先,利用卷积神经网络对细粒度图像库进行初分类,得到基本网络模型。再对网络模型进行可视化分析,发现仅有部分图像区域对目标类别有贡献,利用学习好的基本网络计算图像像素对相关类别的空间支持度,生成自上而下注意图,检测图像中的关键区域。再用注意图初始化GraphCut算法,分割出关键的目标区域,从而提高图像的判别性。最后,对分割图像提取CNN特征实现细粒度分类。结果 该模型仅使用图像的类别标注信息,在公开的细粒度图像库Cars196和Aircrafts100上进行实验验证,最后得到的平均分类正确率分别为86.74%和84.70%。这一结果表明,在GoogLeNet模型基础上引入注意信息能够进一步提高细粒度图像分类的正确率。结论 基于自上而下注意图的语义分割策略,提高了细粒度图像的分类性能。由于不需要目标窗口和部位的标注信息,所以该模型具有通用性和鲁棒性,适用于显著性目标检测、前景分割和细粒度图像分类应用。    

11.  面向人脸年龄估计的深度融合神经网络  
   孙宁  顾正东  刘佶鑫  韩光《中国图象图形学报》,2018年第23卷第1期
   目的 为了提高人脸图像年龄估计的精度,提出一种端对端可训练的深度神经网络模型来进行人脸年龄估计。方法 该网络模型由多个卷积神经网络(CNN)和一个深度置信网络(DBN)堆叠而成,称为深度融合网络(DFN)。首先使用多个并联的CNN提取人脸图像多个区域的外观特征,将得到的特征进行串接输入一个DBN网络进行非线性融合。为了实现DFN的端到端的整体训练,提出一种逐网络迭代训练(INWT)的机制。为了降低过拟合效应,那些对应人脸局部图像的CNN经过多次迭代迁移学习实现面向人脸年龄估计任务的训练。完成对DFN中所有CNN和DBN的预训练后,再进行全网络端到端的整体精调。结果 在两个人脸年龄图像库MORPHⅡ和FG-NET上对本文方法进行测试,实验结果显示基于DFN的人脸年龄估计方法能在两个人脸图像库中分别取得平均绝对误差(MAE)等于3.42和4.14的估计精度,与目前主流的年龄估计算法,如基于浅层学习的CA-SVR方法(两个数据库上取得的MAE分别等于5.88和4.75),基于深度学习的DeepRank+方法(MORPHⅡ数据库上取得的MAE为3.49)和Deep-CS-LBMFL方法(FG-NET数据库上取得的MAE为4.22)等相比,估计精确度明显提高。结论 本文提出基于深度融合网络的人脸年龄估计方法与当前大部分基于深度神经网络的主流算法相比具有明显的优势。    

12.  图像超分辨率重建中的细节互补卷积模型  
   李浪宇  苏卓  石晓红  黄恩博  罗笑南《中国图象图形学报》,2018年第23卷第4期
   目的 现有的超分辨卷积神经网络为了获得良好的高分辨率图像重建效果需要越来越深的网络层次和更多的训练,因此存在了对于样本数量依懒性大,参数众多致使训练困难以及训练所需迭代次数大,硬件需求大等问题。针对存在的这些问题,本文提出一种改进的超分辨率重建网络模型。方法 本文区别于传统的单输入模型,采取了一种双输入细节互补的网络模型,在原有的SRCNN单输入模型特征提取映射网络外,添加了一个新的输入。本文结合图像局部相似性,构建了一个细节补充网络来补充图像特征,并使用一层卷积层将细节补充网络得到的特征与特征提取网络提取的特征融合,恢复重建高分辨率图像。结果 本文分别从主观和客观的角度,对比了本文方法与其他主流方法之间的数据对比和效果对比情况,在与SRCNN在相似网络深度的情况下,本文方法在放大3倍时的PSNR数值在Set5以及Set14数据下分别比SRCNN高出0.17 dB和0.08 dB。在主观的恢复图像效果上,本文方法能够很好的恢复图像边缘以及图像纹理细节。结论 实验证明,本文所提出的细节互补网络模型能够在较少的训练以及比较浅的网络下获得有效的重建图像并且保留更多的图像细节。    

13.  结合深度学习与条件随机场的遥感图像分类  
   夏梦  曹国  汪光亚  尚岩峰《中国图象图形学报》,2017年第22卷第9期
   目的 为进一步提高遥感影像的分类精度,将卷积神经网络(CNN)与条件随机场(CRF)两个模型结合,提出一种新的分类方法。方法 首先采用CNN对遥感图像进行预分类,并将其类成员概率定义为CRF模型的一阶势函数;然后利用高斯核函数的线性组合定义CRF模型的二阶势函数,用全连接的邻域结构代替常见的4邻域或8邻域;接着加入区域约束,使用Mean-shift分割方法得到超像素,通过计算超像素的后验概率均值修正各像素的分类结果,鼓励连通区域结果的一致性;最后采用平均场近似算法实现整个模型的推断。结果 选用3组高分辨率遥感图像进行地物分类实验。本文方法不仅能抑制更多的分类噪声,同时还可以改善过平滑现象,保护各类地物的边缘信息。实验采用类精度、总体分类精度OA、平均分类精度AA,以及Kappa系数4个指标进行定量分析,与支持向量机(SVM)、CNN和全连接CRF相比,最终获得的各项精度均得到显著提升,其中,AA提高3.28个百分点,OA提高3.22个百分点,Kappa提高5.07个百分点。结论 将CNN与CRF两种模型融合,不仅可以获得像元本质化的特征,而且同时还考虑了图像的空间上下文信息,使分类更加准确,后加入的约束条件还能进一步保留地物目标的局部信息。本文方法适用于遥感图像分类领域,是一种精确有效的分类方法。    

14.  特征学习的单幅图像去雾算法  
   麦嘉铭  王美华  梁云  蔡瑞初《中国图象图形学报》,2016年第21卷第4期
   目的 雾霾天气使图像降质,严重影响军事、交通和安全监控等领域信息系统的正常运作,因此图像去雾具有重要研究意义。目前主流的单幅图像去雾算法主要利用各种与雾相关的颜色特征实现,但不同的颜色先验知识往往存在各自的场景局限性。为提高图像去雾的普适性,提出一种特征学习的单幅图像去雾方法。方法 首先通过稀疏自动编码机对有雾图像进行多尺度的纹理结构特征提取,同时抽取各种与雾相关的颜色特征。然后采用多层神经网络进行样本训练,得到雾天条件下纹理结构特征及颜色特征与场景深度间的映射关系,并估算出有雾图像的场景深度图。最后结合大气散射模型,根据场景深度图复原无雾图像。结果 与主流去雾算法的结果定性对比,复原后的图像细节更清晰,颜色更自然。采用均方误差和结构相似度定量评价各算法去雾结果与真实无雾图像的相似度,本文算法结果与真实无雾场景间的相似度最高,达到99.9%。结论 对实验结果的定性及定量分析表明,本文算法能有效获取有雾图像的场景深度,复原出视觉效果理想的无雾图像,且具有很好的场景普适性。    

15.  融合判别式深度特征学习的图像识别算法  
   黄旭  凌志刚  李绣心《中国图象图形学报》,2018年第23卷第4期
   目的 卷积神经网络在图像识别算法中得到了广泛应用。针对传统卷积神经网络学习到的特征缺少更有效的鉴别能力而导致图像识别性能不佳等问题,提出一种融合线性判别式思想的损失函数LDloss(linear discriminant loss)并用于图像识别中的深度特征提取,以提高特征的鉴别能力,进而改善图像识别性能。方法 首先利用卷积神经网络搭建特征提取所需的深度网络,然后在考虑样本分类误差最小化的基础上,对于图像多分类问题,引入LDA(linear discriminant analysis)思想构建新的损失函数参与卷积神经网络的训练,来最小化类内特征距离和最大化类间特征距离,以提高特征的鉴别能力,从而进一步提高图像识别性能,分析表明,本文算法可以获得更有助于样本分类的特征。其中,学习过程中采用均值分批迭代更新的策略实现样本均值平稳更新。结果 该算法在MNIST数据集和CK+数据库上分别取得了99.53%和94.73%的平均识别率,与现有算法相比较有一定的提升。同时,与传统的损失函数Softmax loss和Hinge loss对比,采用LDloss的深度网络在MNIST数据集上分别提升了0.2%和0.3%,在CK+数据库上分别提升了9.21%和24.28%。结论 本文提出一种新的融合判别式深度特征学习算法,该算法能有效地提高深度网络的可鉴别能力,从而提高图像识别精度,并且在测试阶段,与Softmax loss相比也不需要额外的计算量。    

16.  前列腺磁共振图像分割的反卷积神经网络方法  
   詹曙  梁植程  谢栋栋《中国图象图形学报》,2017年第22卷第4期
   目的 前列腺磁共振图像存在组织边界对比度低、有效区域少等问题,手工勾勒组织轮廓边界的传统分割方法无法满足临床实时性要求,针对这些问题提出了一种基于深度反卷积神经网络的前列腺磁共振图像分割算法。方法 基于深度学习理论,将训练图像样本输入设计好的卷积神经网络,提取具有高度区分性的前列腺图像特征,反卷积策略用于拓展特征图尺寸,使网络的输入尺寸与输出预测图大小匹配。网络生成的概率预测图通过训练一个softmax分类器,对预测图像取二值化,获得最终的分割结果。为克服原始图像中有效组织较少的问题,采用dice相似性系数作为卷积网络的损失函数。结果 本文算法以Dice相似性系数和Hausdorff距离作为评价指标,在MICCAI 2012数据集中,Dice相似性系数大于89.75%,Hausdorff距离小于1.3 mm,达到了传统方法的分割精度,并且将处理时间缩短在1 min以内,明显优于其他方法。结论 定量与定性的实验表明,基于反卷积神经网络的前列腺分割方法可以准确地对磁共振图像进行分割,相比于其他分割算法大幅度减小了处理时间,能够很好地适用于临床的前列腺图像分割任务。    

17.  卷积神经网络的多字体汉字识别  
   柴伟佳  王连明《中国图象图形学报》,2018年第23卷第3期
   目的 多字体的汉字识别在中文自动处理及智能输入等方面具有广阔的应用前景,是模式识别领域的一个重要课题。近年来,随着深度学习新技术的出现,基于深度卷积神经网络的汉字识别在方法和性能上得到了突破性的进展。然而现有方法存在样本需求量大、训练时间长、调参难度大等问题,针对大类别的汉字识别很难达到最佳效果。方法 针对无遮挡的印刷及手写体汉字图像,提出了一种端对端的深度卷积神经网络模型。不考虑附加层,该网络主要由3个卷积层、2个池化层、1个全连接层和一个Softmax回归层组成。为解决样本量不足的问题,提出了综合运用波纹扭曲、平移、旋转、缩放的数据扩增方法。为了解决深度神经网络参数调整难度大、训练时间长的问题,提出了对样本进行批标准化以及采用多种优化方法相结合精调网络等策略。结果 实验采用该深度模型对国标一级3 755类汉字进行识别,最终识别准确率达到98.336%。同时通过多组对比实验,验证了所提出的各种方法对改善模型最终效果的贡献。其中使用数据扩增、使用混合优化方法和使用批标准化后模型对测试样本的识别率分别提高了8.0%、0.3%和1.4%。结论 与其他文献中利用手工提取特征结合卷积神经网络的方法相比,减少了人工提取特征的工作量;与经典卷积神经网络相比,该网络特征提取能力更强,识别率更高,训练时间更短。    

18.  多通道卷积的图像超分辨率方法  
   李云飞  符冉迪  金炜  纪念《中国图象图形学报》,2017年第22卷第12期
   目的 超分辨率技术在实际生活中具有较为广泛的应用。经典的基于卷积神经网络的超分辨率(SRCNN)方法存在重建图像纹理结构模糊以及网络模型训练收敛过慢等问题。针对这两个问题,在SRCNN的基础上,提出一种多通道卷积的图像超分辨率(MCSR)算法。方法 通过增加残差链接,选择MSRA初始化方法对网络权值进行初始化,加快模型收敛;引入多通道映射提取更加丰富的特征,使用多层3×3等小卷积核代替单层9×9等大卷积核,更加有效地利用特征,增强模型的超分辨率重构效果。结果 MCSR迭代4×106次即可收敛,在Set5与Set14数据集上边长放大3倍后的平均峰值信噪比分别是32.84 dB和29.28 dB,与SRCNN相比提升显著。结论 MCSR收敛速度更快,并且可以生成轮廓清晰的高分辨率图像,超分辨率效果更加优秀。    

19.  不同池化模型的卷积神经网络学习性能研究  被引次数:1
   刘万军  梁雪剑  曲海成《中国图象图形学报》,2016年第21卷第9期
   目的 基于卷积神经网络的深度学习算法在图像处理领域正引起广泛关注。为了进一步提高卷积神经网络特征提取的准确度,加快参数收敛速度,优化网络学习性能,通过对比不同的池化模型对学习性能的影响提出一种动态自适应的改进池化算法。方法 构建卷积神经网络模型,使用不同的池化模型对网络进行训练,并检验在不同迭代次数下的学习结果。在现有算法准确率不高和收敛速度较慢的情况下,通过使用不同的池化模型对网络进行训练,从而构建一种新的动态自适应池化模型,并研究在不同迭代次数下其对识别准确率和收敛速度的影响。结果 通过对比实验发现,使用动态自适应池化算法的卷积神经网络学习性能最优,在手写数字集上的收敛速度最高可以提升18.55%,而模型对图像的误识率最多可以降低20%。结论 动态自适应池化算法不但使卷积神经网络对特征的提取更加精确,而且很大程度地提高了收敛速度和模型准确率,从而达到优化网络学习性能的目的。这种模型可以进一步拓展到其他与卷积神经网络相关的深度学习算法。    

20.  自然场景图像与合成图像的快速分类  
   刘国帅  仲伟峰  殷飞  刘成林《中国图象图形学报》,2017年第22卷第5期
   目的 随着现代通信和传感技术的快速发展,互联网上多媒体数据日益增长,既为人们生活提供了便利,又给信息有效利用提出了挑战。为充分挖掘网络图像中蕴含的丰富信息,同时考虑到网络中图像类型的多样性,以及不同类型的图像需要不同的处理方法,本文针对当今互联网中两种主要的图像类型:自然场景图像与合成图像,设计层次化的快速分类算法。方法 该算法包括两层,第1层利用两类图像在颜色,饱和度以及边缘对比度上表现出来的差异性提取全局特征,并结合支持向量机(SVM)进行初步分类,第1层分类结果中低置信度的图像会被送到第2层中。在第2层中,系统基于词袋模型(bag-of-words)对图像不同类型的局部区域的纹理信息进行编码得到局部特征并结合第2个SVM分类器完成最终分类。针对层次化分类框架,文中还提出两种策略对两个分类器进行融合,分别为分类器结果融合与全局+局部特征融合。为测试算法的实用性,同时收集并发布了一个包含超过30 000幅图像的数据库。结果 本文设计的全局与局部特征对两类图像具有较强的判别性。在单核Intel Xeon(R)(2.50 GHz)CPU上,分类精度可达到98.26%,分类速度超过40帧/s。另外通过与基于卷积神经网络的方法进行对比实验可发现,本文提出的算法在性能上与浅层网络相当,但消耗更少的计算资源。结论 本文基于自然场景图像与合成图像在颜色、饱和度、边缘对比度以及局部纹理上的差异,设计并提取快速有效的全局与局部特征,并结合层次化的分类框架,完成对两类图像的快速分类任务,该算法兼顾分类精度与分类速度,可应用于对实时性要求较高的图像检索与数据信息挖掘等实际项目中。    

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号