首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
针对BP神经网络易陷入局部最小、收敛速度慢的问题,研究了基于粒子群优化的学习算法,给出了具体的算法方案设计,并将其应用于图像复原。首先用高斯噪声对无噪图像进行模糊处理;然后将结果和原图像组成训练对,用于训练优化后的神经网络;最后利用训练好的神经网络对测试图像进行复原,从而达到去除噪声的目的。仿真结果表明,与BP神经网络相比,PSO-BP算法收敛速度快,迭代次数少,复原的图像在归一化均方误差(NMSE)和峰值信噪比(PSNR)的效果更好。  相似文献   

2.
在本文中,提出了采用粒子群算法来优化RBF神经网络,并建立了这种新的混合模型。在这个粒子群和RBF神经网络的混合模型中,粒子群优化算法应用于选择中心节点和隐藏节点的宽度以及输出向量方面,对RBF神经网络建立了5个输入节点,6个隐藏节点和一个输出节点。通过对粒子群优化的RBF神经网络模型对一些地区的结核病发病趋势进行预测,得出这种混合模型对结核病发展趋势进行预测能够取得较好的预测结果。  相似文献   

3.
针对目前齿轮箱系统在利用神经网络故障诊断时存在正确识别率低和依靠经验选择参数的问题,提出了基于粒子群优化BP网络的齿轮箱故障诊断方法。简要介绍利用齿轮振动原理提取特征参数建立故障模型,该模型以齿轮箱特征向量为输入、故障类型为输出,详细分析了通过BP神经网络、概率神经网络和粒子群优化BP神经网络实现齿轮箱故障诊断。仿真结果表明,BP神经网络对齿轮箱故障诊断收敛速度慢,故障识别率为82%;概率神经网络的模型故障诊断识别率依据经验选取spread值决定,故障识别率最大为98%;粒子群优化后的BP神经网络故障诊断分类识别率为100%且自适应能力强。  相似文献   

4.
神经网络基于粒子群优化的学习算法研究   总被引:24,自引:0,他引:24  
研究神经网络基于粒子群优化的学习算法,将粒子群优化算法用于神经网络的学习训练,并与遗传算法进行了比较,结果表明,神经网络基于粒子群优化的学习算法简单容易实现,而且能更快地收敛于最优解。  相似文献   

5.
把模拟退火思想引入到粒子群优化算法中。提出一种关于神经网络结构的优化设计方法,用于同时完成对网络结构空间和权值空间的搜索。算法对神经网络的结构和权值进行优化,删除网络中的冗余结点和权值,提高网络的处理能力。实验结果表明,算法能够有效抑制粒子群优化算法不成熟收敛的发生,有效提高前馈神经网络的收敛精度和收敛速度,表现出良好的性能。  相似文献   

6.
针对机器人在不确定环境下末端执行器运动轨迹的准确性及平稳性问题,采用基于遗传算法(GA)优化径向基函数(RBF)神经网络的轨迹规划方法对Kinova Mico2机器人进行轨迹规划研究。介绍了机器人的相关参数及坐标系、建立了D-H矩阵和运动学模型。提取机器人实际抓取物品的直线轨迹并等分插补,用GA优化并实时在线更新RBF神经网络的权值,以更优的权值参数建立新的RBF网络。研究结果表明:相比优化前,基于GA优化RBF的规划轨迹逼近误差小且平滑稳定,仿真结果较为稳定,轨迹规划的可行性满足机器人实际抓取工作的需要。  相似文献   

7.
针对标准BP神经网络中收敛速度慢以及易陷入局部最优解等问题,利用粒子群算法的全局搜索性,将粒子群算法应用到BP神经网络训练中建立了PSO-BP神经网络模型,结果表明改进模型不仅可以克服传统BP网络收敛速度慢和易陷入局部权值的局限问题,而且很大程度地提高了结果精度和BP网络学习能力,将此模型应用到结晶器漏钢预报系统中,并用某钢厂采集到的历史数据对该模型进行训练与测试,与标准BP神经网络测试结果进行分析与比较,实验表明PSO-BP网络模型预报更加实时、准确,具有很好的应用前景.  相似文献   

8.
在当今社会,人工神经网络已成为人工智能领域极其重要的组成部分。过去困扰科学家的瓶颈问题,在采用人工神经网络方法后都取得了异于传统的良好效果,因此人工神经网络被广泛应用于模式识别、机器学习和故障诊断等领域。BP神经网络是最经典的人工神经网络之一,但BP神经网络的不足之处在于其全局寻优能力不强,因此文章研究应用粒子群算法优化BP神经网络。  相似文献   

9.
RBF(径向基函数)神经网络能在各个领域得到了很好的应用,关键在于网络模型参数权值、网络中心值、基宽向量和隐含层节点数的选取。传统的RBF神经网络存在精度不高,容易陷入局部最优,收敛速度慢等缺点。针对这些问题,提出了利用粒子群算法优化后件多项式RBF神经网络方法,即优化含有后件多项式RBF神经网络的权值、网络中心值和基宽向量值,并选取最优的隐含层节点数,进而提出了PSOIRBF(基于粒子群的后件多项式RBF)神经网络。通过对非线性模型和实例等非线性被控对象的仿真研究及对模型的分析,表明了所提出算法的有效性。  相似文献   

10.
针对硅压阻式压力传感器的温度漂移问题,提出了基于粒子群优化算法PSO(Particle Swarm Optimization Algorithm)的BP神经网络的温度补偿模型,通过粒子群化算法对BP网络的权值和阈值进行全局寻优,克服了BP网络收敛速度慢和易陷入局部极值的缺陷,而且温度补偿的精度较高。研究结果表明,该方法有效的抑制了温度对压力传感器输出的影响,提高了传感器的稳定性和准确性。  相似文献   

11.
摄像机标定是从二维图像提取三维空间信息的关键步骤,标定的精度直接关系到三维重构结果的逼真程度。为了有效解决传统摄像机标定算法中的多参数、计算费时费力等问题,提高摄像机标定的精度和速度,将粒子群遗传算法(particle swarm optimization genetic algorithm,PSO-GA)应用于摄像机标定中。对参数进行粒子群算法优化后,再使用遗传算法中的选择、交叉和变异等操作进行参数优化,以实现粒子群算法与遗传算法的融合。结合后的算法全局搜索能力较强,收敛速度更快,优化能力与鲁棒性得以提高。同时,基于神经网络的摄像机标定方法所能覆盖的标定空间十分有限,提出了一种采用粒子群遗传算法优化BP神经网络的摄像机标定方法,以解决传统摄像机标定方法难以解决的问题。实验数据表明,基于粒子群遗传算法的BP神经网络标定是一种可行的方法,标定精度高,收敛速度快,泛化能力强。  相似文献   

12.
对城市用水量的科学预测是城市供水管网规划与设计基础,可以给供水系统安排生产与优化调度提供科学依据。由于传统BP神经网络应用于城市用水量预测存在训练收敛速度过慢、预测精度较低等缺陷,本文提出基于改进粒子群优化BP神经网络的城市用水量预测方法。实验结果表明,该方法的训练收敛速度、预测精度明显优于传统BP神经网络、粒子群优化BP网络的方法,可以满足供水系统生产与调度的实际需要。  相似文献   

13.
RBF神经网络的混合微粒群学习算法   总被引:2,自引:0,他引:2  
在分析RBF神经网络的结构特点基础上, 定义一个布尔向量L作为网络的结构参数, 与原来RBF神经网络的隐节点参数集一起构成了新的RBF网络隐节点参数集{c,σ, L}, 并给出了一个新的RBF网络输入输出关系表达式;采用一种混合协同微粒群算法同时对RBF网络拓扑结构和隐层节点参数进行优化设计,并将输出线性参数集分离后采用最小二乘法进行优化设计,简化了优化空间,加速了算法的收敛速度.  相似文献   

14.
BP神经网络具有良好的非线性处理能力,粒子群优化算法(PSO)提高神经网络的学习效率、保证神经网络全局收敛。针对粉状炸药配方控制系统中存在的强耦合、非线性及参数不确定等问题,建立一种基于粒子群和BP神经网络的炸药配方预测控制模型。仿真和现场运行结果表明,该配方控制系统具有良好的自学习和自适应能力,取得了良好的控制效果,满足实际生产要求。  相似文献   

15.
基于思维进化算法的径向基函数神经网络结构优化   总被引:1,自引:0,他引:1  
为了解决一类径向基函数的结构优化问题,该文在基本思维进化计算框架的基础上,提出了一种有效的混合优化策略。在优化过程中充分利用样本的信息,同时借鉴信息矩阵的思想,提出了利用信息矩阵进行信息抽取和信息积累的方法,并设计了有效的趋同、异化算子与个体之间学习的具体过程,使结构和参数同时得到了优化。仿真研究表明,该算法是快速有效的,并能保证网络具有较好的泛化能力。  相似文献   

16.
神经网络系统具有自学习和自适应的能力,同时有很强的容错性和鲁棒性,适用于处理难于语言化的模式信息。为使移动机器人沿地面标志线自主运动,采用CCD图像传感器与PC/104总线相结合的硬件系统,运用神经网络的模式识别功能,实现了机器人的寻线控制,实验结果表明该方法是可行的,能有效地提高移动机器人对环境的适应性和其智能化水平。  相似文献   

17.
为了更精确地检测出混沌背景下的微弱目标信号,提高预测效果,文中提出了一种混沌混合粒子群优化RBF神经网络(CHPSO-RBFNN)算法。本算法主要采用了基于群体自适应变异和个体退火操作的混沌粒子群优化RBF神经网络,利用群体自适应变异以及个体退火操作优化混沌粒子群,有效地提高了粒子群算法的全局收敛性,优化了RBF神经网络的结构和参数。把该算法用于预测混沌时间序列、检测混沌背景下微弱目标信号,实验结果表明本算法有良好的非线性预测能力,可以有效地检测出混沌背景下的微弱目标信号。  相似文献   

18.
针对临床路径的复杂性和模糊不确定性,对其进行综合分析,计算出临床路径诊疗单元的平均治疗天数以及临床路径的总治疗天数,分别作为实验的样本数据和最终评价指标。在此基础上,利用BP神经网络的方法对临床路径进行优化建模。并通过实验对比分析隐层神经元数量对临床路径优化结果的影响,发现神经元数量增多时,错误率明显下降,迭代次数呈上下波动。最后选取7-9-1的BP神经网络结构,以某地区三甲医院的糖尿病加高血压临床路径为例,进行仿真实验。结果显示,训练模型的输出值与期望值之间的相对误差范围在0-0.2%之内,测试模型的输出值与期望值之间的相对误差范围在0-0.1%之内。说明该模型具有较强的自学习自适应能力,能够有效地优化临床路径,减少患者的治疗天数。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号