首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 46 毫秒
1.
Hierarchical Clustering Algorithms for Document Datasets   总被引:9,自引:0,他引:9  
Fast and high-quality document clustering algorithms play an important role in providing intuitive navigation and browsing mechanisms by organizing large amounts of information into a small number of meaningful clusters. In particular, clustering algorithms that build meaningful hierarchies out of large document collections are ideal tools for their interactive visualization and exploration as they provide data-views that are consistent, predictable, and at different levels of granularity. This paper focuses on document clustering algorithms that build such hierarchical solutions and (i) presents a comprehensive study of partitional and agglomerative algorithms that use different criterion functions and merging schemes, and (ii) presents a new class of clustering algorithms called constrained agglomerative algorithms, which combine features from both partitional and agglomerative approaches that allows them to reduce the early-stage errors made by agglomerative methods and hence improve the quality of clustering solutions. The experimental evaluation shows that, contrary to the common belief, partitional algorithms always lead to better solutions than agglomerative algorithms; making them ideal for clustering large document collections due to not only their relatively low computational requirements, but also higher clustering quality. Furthermore, the constrained agglomerative methods consistently lead to better solutions than agglomerative methods alone and for many cases they outperform partitional methods, as well.  相似文献   

2.
This paper considers a variety of geometric pattern recognition problems on input sets of size n using a coarse grained multicomputer model consisting of p processors with Ω(n/p) local memory each (i.e., Ω(n/p) memory cells of Θ(log n) bits apiece), where the processors are connected to an arbitrary interconnection network. It introduces efficient scalable parallel algorithms for a number of geometric problems including the rectangle finding problem, the maximal equally spaced collinear points problem, and the point set pattern matching problem. All of the algorithms presented are scalable in that they are applicable and efficient over a very wide range of ratios of problem size to number of processors. In addition to the practicality imparted by scalability, these algorithms are easy to implement in that all required communications can be achieved by a small number of calls to standard global routing operations.  相似文献   

3.
In this paper we present an n^ O(k 1-1/d ) -time algorithm for solving the k -center problem in \reals d , under L fty - and L 2 -metrics. The algorithm extends to other metrics, and to the discrete k -center problem. We also describe a simple (1+ɛ) -approximation algorithm for the k -center problem, with running time O(nlog k) + (k/ɛ)^ O(k 1-1/d ) . Finally, we present an n^ O(k 1-1/d ) -time algorithm for solving the L -capacitated k -center problem, provided that L=Ω(n/k 1-1/d ) or L=O(1) . Received July 25, 2000; revised April 6, 2001.  相似文献   

4.
多视角聚类通过利用多视角之间的互补性和一致性信息来提高聚类的性能.近年来受到越来越多的关注.为了及时掌握目前基于图的多视角聚类算法的研究现状与最新技术,对大量的、最新的多视角图聚类进行调查、归纳整理、分类及总结.根据多视角聚类涉及的算法机制和数学原理,并进一步分为基于图、基于网络和基于谱的聚类方法.不仅详细介绍了每一类...  相似文献   

5.
Fast and Robust General Purpose Clustering Algorithms   总被引:3,自引:0,他引:3  
General purpose and highly applicable clustering methods are usually required during the early stages of knowledge discovery exercises. k-MEANS has been adopted as the prototype of iterative model-based clustering because of its speed, simplicity and capability to work within the format of very large databases. However, k-MEANS has several disadvantages derived from its statistical simplicity. We propose an algorithm that remains very efficient, generally applicable, multidimensional but is more robust to noise and outliers. We achieve this by using medians rather than means as estimators for the centers of clusters. Comparison with k-MEANS, EXPECTATION and MAXIMIZATION sampling demonstrates the advantages of our algorithm.  相似文献   

6.
Web文本聚类算法的分析比较   总被引:2,自引:0,他引:2  
随着计算机网络的发展,各种文本资源以惊人的速度增长,导致信息搜寻困难和信息利用率低下。而快速高质量的Web文本聚类技术可以满足用户方便快捷地从互联网获得所需要的信息资源。文章对Web文本聚类如网页采集、去噪、分词、特征表示等关键技术进行研究,对常用的Web文本聚类算法进行了分析比较,所给出的分析比较结果对文本聚类算法的应用有现实意义。  相似文献   

7.
随着数据信息的积累,如何从这些海量信息中有效地提取所需要的知识成为当前数据挖掘的重要内容。聚类作为数据挖掘的重要工具,通过将数据划分成多个类,使得类内数据尽可能相似,而类间数据的相似度尽可能小,已成为研究热点。本文总结在数据挖掘中的聚类算法,针对聚类中所存在的问题进行归纳,并对未来的研究进行了展望。  相似文献   

8.
基于遗传算法学习聚类算法的中心个数   总被引:2,自引:0,他引:2  
无导师聚类算法的目标是将一个数据集划分为若干个类,使得类内相似性尽可能大且类间相似性尽可能小。聚类过程中对数据集合分割成多少个类是一个很难确定的问题,目前还没有较好的解决方法。文章使用遗传算法对无导师聚类K-均值(K-means)算法中中心个数K值进行学习,实现了使用遗传算法进行聚类中心个数的确定,旨在提供一种选择中心参数个数的方法。通过对UCI机器学习数据库中的7个数据库进行实验,证实此方法是比较有效的。  相似文献   

9.
基于密度的聚类算法作为数据挖掘方法中的一种主要方法,不仅可以从数据集中发现任意形状的簇,而且可以观察到一个并发的、完整的聚类结构,以及具有对噪声数据不敏感的特点。针对目前常用的几种基于密度的聚类算法及改进算法进行讨论,分析了这些密度聚类算法各自的优缺点,并且以地理信息系统为应用研究背景,提出了基于密度的聚类算法与GIS相结合,通过对多维数据属性特征的提取,扩展到多维数据的处理,在三维空间地形数据中的分析中取得了高效的聚类结果。  相似文献   

10.
蚁群聚类算法综述   总被引:18,自引:0,他引:18  
数据聚类是重要的数据挖掘技术,在工程和技术等领域具有广泛的应用背景。蚁群算法作为一种新型的优化方法,具有很强的鲁棒性和适应性。文章着重介绍蚁群聚类算法的研究情况,阐述当今流行的蚁群聚类算法的基本原理及其特性,旨在为蚁群聚类算法的发展提供引导作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号