首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Interferometric Synthetic Aperture Radar (InSAR) signal is returned from the canopy of the obscuring trees instead of bare ground when land is covered by forests. Therefore, the difference between an InSAR elevation and a bare earth model might contain information on forest height. The objective of this paper was to investigate if the difference between an airborne C-band InSAR from the National Aeronautics and Space Administration (NASA)/Jet Propulsion Laboratory (JPL) and a bare earth model of 1/3 arcsecond National Elevation Datasets can be used for regional forest height estimation. The error sources of vertical offset, uncompensated roll angle, residual vertical bias, and scattering phase centre height conversion were analysed and corrected in this estimation. The results were validated by the least-square linear regression analysis between Light Detection and Ranging (LiDAR) and the estimated height at different forest stand sizes within different slope categories. In areas with slopes less than 5°, the correlation coefficients increased when forest stand sizes increased. In the area of slope ranging from 5 to 10°, a similar trend of increasing correlation coefficients with increasing stand size could also be observed, but with smaller corresponding correlation coefficients than those of slope 0–5°. In areas with slopes larger than 10°, the correlation coefficients were very poor. These results indicate the difference between airborne C-band InSAR and the accurate bare earth model has the potential for regional forest height estimation in flat areas with a minimum unit of 3750–5000 m2. However, to accurately estimate forest height in a mountainous terrain a solution must be found to correct the significant amount of noise caused by the terrain in these areas.  相似文献   

2.
In this study we examine the utility of a three-component scattering model to quantify the sensitivity of radar incidence angle over snow-covered landfast first-year sea ice (FYI) during the late winter season. This three-component scattering model is based on (1) surface scattering contributed from the snow-covered FYI (smooth-ice (SI), rough-ice (RI), and deformed-ice (DI) types); (2) volume scattering contributed from snow layers which consist of enlarged snow grains, elevated brine volume, and preferential orientation of snow grains relative to radar look direction, as well as the underlying sea ice; and (3) double-bounce scattering contributed from ice ridges and ice fragments. This study uses RADARSAT-2 C-band polarimetric synthetic aperture radar (POLSAR) data acquired on 15 and 18 May 2009 for Hudson Bay, near Churchill, during late winter with surface air temperatures ≤?8°C at two different incidence angles (29° and 39°). The three-component scattering model is used to discriminate between snow-covered smooth, rough, and deformed FYI. The model shows enhanced discrimination at an incidence angle of 29°, compared with an incidence angle of 39°. The model is then used to quantify the sensitivity of radar incidence angle to each of the three scattering contributors. The results show that the relative fraction of surface scattering dominates for all three FYI types (SI ≈ 77.3%; RI ≈ 66.0%; and DI ≈ 61.1%) at 29° and decreases with increasing incidence angle and surface roughness. Volume scattering is found to be the second dominant mechanism (SI ≈ 19.1%, RI ≈ 32.2%, and DI ≈ 37.4% at 29° and SI ≈ 28.3%, RI ≈ 41.0%, and DI ≈ 49.5% at 39°) over snow-covered FYI and it increases with incidence angle and surface roughness. The double-bounce scattering contribution is low for all FYI types at both incidence angles.  相似文献   

3.
Relationships were assessed between mangrove structural data (leaf area index (LAI), stem density, basal area, diameter at breast height (DBH)) collected from 61 stands located in a black mangrove (Avicennia germinans)-dominated forest and both single polarized ultra-fine (3 m) and multipolarized fine beam (8 m) Radarsat-2 C-band synthetic aperture radar (SAR) data. The stands examined included representatives from the four types of mangroves that typify this degraded system, specifically: predominantly dead mangrove, poor-condition mangrove, healthy dwarf mangrove, and tall healthy mangrove. The results indicate that the selection of the spatial resolution (3 m vs. 8 m) of the incidence angle (27–39°) and the polarimetric mode greatly influence the relationship between the SAR and mangrove structural data. Moreover, the extent of degradation, i.e. whether dead stands are considered, also determines the strength of the relationships between the various SAR and mangrove parameters.

When dead stands are included, the strongest overall relationships between the ultra-fine backscatter (incidence angle of ~32°) and the various structural parameters were found using the horizontal-horizontal (HH) polarization/horizontal-vertical (HV) polarization ratio. However, if the dead stands are not included, then significant relationships with the ultra-fine data were only calculated with the HH data. Similar results were observed using the corresponding incidence angle (~33°) of the fine beam data. When a shallower incidence angle was considered (~39°), fewer and weaker relationships were calculated. Moreover, no significant relationships were observed if the dead stands were excluded from the sample at this incidence angle. The highest correlation coefficients using the steepest incidence (~27°) were found with the co-polarized (HH, vertical-vertical (VV) polarization) modes. Several polarimetric parameters (entropy, pedestal height, surface roughness, alpha angle) based on the decomposition of the scattering matrix of the fine beam mode at this incidence angle were also found to be significantly correlated to mangrove structural data. The highest correlation (R = 0.71) was recorded for entropy and LAI. When the dead stands were excluded, volume scattering was found to be the most significant polarimetric parameter. Finally, multiple regression models, based on texture measures derived from both the grey level co-occurrence matrix (GLCM) and the sum and difference histogram (SADH) of the ultra-fine data, were developed to estimate mangrove parameters. The results indicate that only models derived from the HH data are significant and that several of these were strong predictors of all but stem density.  相似文献   

4.
Abstract

The multi-date data set discussed in this paper was acquired over an agricultural site near Melfort, Saskatchewan, in 1983. The Synthetic Aperture Radar (SAR) data are C-band (5.26GHz) with vertical polarization and two incidence angles, 53° and 30°. A comparison between the data at the two incidence angles shows that the pixel statistics of the image data are different for the two angles. Examination of the statistical distribution shows that the 53° data are more influenced by vegetation than the 30° angle data. The classification accuracy of the 53° data was higher than that obtained with the 30° data. In addition, the classification accuracies obtained using multi-date combinations with the 53° data were superior to accuracies obtained using multi-angle combinations (53°+ 30°). An overall improvement in classification accuracy was obtained using a post segmentation field classifier.  相似文献   

5.
《Ergonomics》2012,55(8):1024-1032
Lifting loads that have a horizontal velocity (e.g. lifting from a conveyor) is often seen in industry and it was hypothesised that the inertial characteristics of these loads may influence lifting technique and low back stress. Seventeen male participants were asked to perform lifting tasks under conditions of four horizontal load speeds (0 m/s, 0.7 m/s, 1.3 m/s and 2.4 m/s) and two lifting frequencies (10 and 20 lifts/min) while trunk motions and trunk muscle activation levels were monitored. Results revealed that increasing horizontal load speed from 0 m/s to 2.4 m/s resulted in an increase in peak sagittal angle (73° vs. 81°) but lower levels of peak sagittal plane angular acceleration (480°/s2 vs. 4°/s2) and peak transverse plane angular acceleration (200°/s per s vs. 140°/s per s) and a consistent increase in trunk muscle co-activation. Participants used the inertia of the load to reduce the peak dynamics of the lifting motion at a cost of increased trunk flexion and higher muscle activity.

Statement of Relevance: Conveyors are ubiquitous in industry and understanding the effects of horizontal load speed on the lifting motions performed by workers lifting items from these conveyors may provide some insight into low back injury risk posed by these tasks.  相似文献   

6.
This paper presents a method and an ultra-violet (UV) lithography system to fabricate high-aspect-ratio microstructures (HARMS) with good sidewall quality and nice dimension control to meet the requirement for industrial high throughput and high yield production of micro devices. The advantages, equipment, working principle of UV projection scanning exposure, and scanning exposure strategies are introduced first. Following the numerical simulation for the UV projection scanning exposure of thick SU-8 photoresist, experiment results are demonstrated for different exposure strategies. With Continually Changing Focus Projection Scanning (CCFPS), SU-8 microstructures with 860 μm high and 15 μm feature size are demonstrated. For microstructure with 866 μm height, 20 μm width, from the top layer to the bottom layer, the dimension can be controlled in the range of +0.7 to ?1.7 μm; also, the vertical sidewall angle can be controlled inside 90 ± 0.16°. It approves that the CCFPS exposure for HARMS can achieve much straighter and more vertical sidewall compared with UV contact print or UV projection exposure with focusing image on the resist surface or an optimized depth.  相似文献   

7.
An attempt has been made in the present study to characterise the vertical kinematic structure of a supercell storm during its different phases of development. The present study utilises the high time and height resolution 53 MHz VHF radar observations at Gadanki (13.5° N, 79.2° E), India. A supercell storm passed over the radar site during 17–18 October, 2002, and has been sampled during its mature to dissipating stages of convective activity. The time height variation of the radar reflectivity in terms of signal to noise ratio (SNR) and spectral width along with vertical velocity have been used to separate two distinct phases of the convective activity associated with the supercell storm. The mature phase of the storm is characterised by enhancement of high value of SNR from the lower troposphere up to the height of the tropopause. During this period, the vertical velocity in the middle troposphere is of the order of 8 to 10 ms?1. The dissipating stage is characterised by diminished structure of SNR in the middle and upper troposphere. During this period, downwards motion is present in the troposphere. Oscillatory nature of the vertical velocity is found in the upper tropospheric/lower stratospheric (UT/LS) region and shows signatures of short period gravity waves. The power spectral and wavelet analysis of the vertical wind perturbations shows signatures of high frequency oscillations of periodicity between 8–30 min. These high frequency waves are possibly owing to the oscillating updrafts and downdrafts impinging on the tropopause owing to penetrative convection.  相似文献   

8.
In this article, the polarization ratio (PR) of TerraSAR-X (TS-X) vertical–vertical (VV) and horizontal–horizontal (HH) polarization data acquired over the ocean is investigated. Similar to the PR of C-band synthetic aperture radar (SAR), the PR of X-band SAR data also shows significant dependence on incidence angle. The normalized radar cross-section (NRCS) in VV polarization data is generally larger than that in HH polarization for incidence angles above 23°. Based on the analysis, two PR models proposed for C-band SAR were retuned using TS-X dual-polarization data. A new PR model, called X-PR hereafter, is proposed as well to convert the NRCS of TS-X in HH polarization to that in VV polarization. By using the developed geophysical model functions of XMOD1 and XMOD2 and the tuned PR models, the sea surface field is retrieved from the TS-X data in HH polarization. The comparisons with in situ buoy measurements show that the combination of XMOD2 and X-PR models yields a good retrieval with a root mean square error (RMSE) of 2.03 m s–1 and scatter index (SI) of 22.4%. A further comparison with a high-resolution analysis wind model in the North Sea is also presented, which shows better agreement with RMSE of 1.76 m s–1 and SI of 20.3%. We also find that the difference between the fitting of the X-PR model and the PR derived from TS-X dual-polarization data is close to a constant. By adding the constant to the X-PR model, the accuracy of HH polarization sea surface wind speed is further improved with the bias reduced by 0.3 m s–1. A case acquired at the offshore wind farm in the East China Sea further demonstrates that the improvement tends to be more effective for incidence angles above 40°.  相似文献   

9.
Two dry subtractive techniques for the fabrication of microchannels in borosilicate glass were investigated, plasma etching and laser ablation. Inductively coupled plasma reactive ion etching was carried out in a fluorine plasma (C4F8/O2) using an electroplated Ni mask. Depth up to 100 μm with a profile angle of 83°–88° and a smooth bottom of the etched structure (Ra below 3 nm) were achieved at an etch rate of 0.9 μm/min. An ultrashort pulse Ti:sapphire laser operating at the wavelength of 800 nm and 5 kHz repetition rate was used for micromachining. Channels of 100 μm width and 140 μm height with a profile angle of 80–85° were obtained in 3 min using an average power of 160 mW and a pulse duration of 120 fs. A novel process for glass–glass anodic bonding using a conductive interlayer of Si/Al/Si has been developed to seal microfluidic components with good optical transparency using a relatively low temperature (350°C).  相似文献   

10.
Winds play a very important role in the dynamics of the lower atmosphere, and there is a need to obtain vertical distribution of winds at high spatio-temporal resolution for various observational and modelling applications. Profiles of wind speed and direction obtained at two tropical Indian stations using a Doppler wind lidar during the Indian southwest monsoon season were inter-compared with those obtained simultaneously from GPS upper-air sounding (radiosonde). Mean wind speeds at Mahbubnagar (16.73° N, 77.98° E, 445 m above mean sea level) compare well in magnitude for the entire height range from 100 m to 2000 m. The mean difference in wind speed between the two techniques ranged from ?0.81 m s?1 to +0.41 m s?1, and the standard deviation of wind speed differences ranged between 1.03 m s?1 and 1.95 m s?1. Wind direction by both techniques compared well up to about 1200 m height and then deviated slightly from each other at heights above, with a standard deviation in difference of 19°–48°. At Pune (1832′ N, 7351′ E, 559 m above mean sea level), wind speed by both techniques matched well throughout the altitude range, but with a constant difference of about 1 m s?1. The root mean square deviation in wind speed ranged from 1.0 to 1.6 m s?1 and that in wind direction from 20° to 45°. The bias and spread in both wind speed and direction for the two stations were computed and are discussed. The study shows that the inter-comparison of wind profiles obtained by the two independent techniques is very good under conditions of low wind speeds, and they show larger deviation when wind speeds are large, probably due the drift of the radiosonde balloon away from the location.  相似文献   

11.
This paper presents the Global Atmospheric Profiles derived from Reanalysis Information (GAPRI) database, which was designed for earth surface temperature retrieval. GAPRI is a comprehensive compilation of selected atmospheric vertical profiles at global scale which can be used for radiative transfer simulation in order to obtain generalized algorithms to estimate land surface temperature (LST). GAPRI includes information on geopotential height, atmospheric pressure, air temperature, and relative humidity derived from the European Centre for Medium-Range Weather Forecasts Re-Analysis data from year 2011. The atmospheric profiles are structured for 29 vertical levels and extracted from a global spatial grid of about 0.75° × 0.75° latitude–longitude with a temporal resolution of 6 hours. The selection method is based in the extraction of clear sky profiles over different atmospheric weather conditions such as tropical, mid-latitude summer, subarctic, and arctic, while also considering sea and land areas and day- and night-time conditions. The GAPRI database was validated by comparing land and sea surface temperature values derived from it to those obtained using other existing atmospheric profile databases and in situ measurements. Moreover, GAPRI was also compared to previous radiosonde atmospheric profiles using simulated split-window algorithms. Results show good agreement between GAPRI and previous atmospheric databases, thus demonstrating the potential of GAPRI for studies related to forward simulations in the thermal infrared range. GAPRI is a freely available database that can be modified according to the user’s needs and local atmospheric conditions.  相似文献   

12.
This paper presents numerical results pertaining to the effects of interface curvature on the effective slip behavior of Poiseuille flow through microchannels and microtubes containing superhydrophobic surfaces with transverse ribs and grooves. The effects of interface curvature are systematically investigated for different normalized channel heights or tube diameters, shear-free fractions, and flow Reynolds numbers. The numerical results show that in the low Reynolds number Stokes flow regime, when the channel height or tube diameter (normalized using the groove–rib spacing) is sufficiently large, the critical interface protrusion angle at which the effective slip length becomes zero is θ c ≈ 62°–65°, which is independent of the shear-free fraction, flow geometry (channel and tube), and flow driving mechanism. As the normalized channel height or tube diameter is reduced, for a given shear-free fraction, the critical interface protrusion angle θ c decreases. As inertial effects become increasingly dominant corresponding to an increase in Reynolds number, the effective slip length decreases, with the tube flow exhibiting a more pronounced reduction than the channel flow. In addition, for the same corresponding values of shear-free fraction, normalized groove–rib spacing, and interface protrusion angle, longitudinal grooves are found to be consistently superior to transverse grooves in terms of effective slip performance.  相似文献   

13.
《Ergonomics》2012,55(14):1527-1537
Military personnel are required to carry heavy loads whilst marching; this load carriage represents a substantial component of training and combat. Studies in the literature mainly concentrate on physiological effects, with few biomechanical studies of military load carriage systems (LCS). This study examines changes in gait and posture caused by increasing load carriage in military LCS. The four conditions used during this study were control (including rifle, boots and helmet carriage, totalling 8 kg), webbing (weighing 8 kg), backpack (24 kg) and a light antitank weapon (LAW; 10 kg), resulting in an incremental increase in load carried from 8, 16, 40 to 50 kg. A total of 20 male soldiers were evaluated in the sagittal plane using a 3-D motion analysis system. Measurements of ankle, knee, femur, trunk and craniovertebral angles and spatiotemporal parameters were made during self-paced walking. Results showed spatiotemporal changes were unrelated to angular changes, perhaps a consequence of military training. Knee and femur ranges of motion (control, 21.1° ± 3.0 and 33.9° ± 7.1 respectively) increased (p < 0.05) with load (LAW, 25.5° ± 2.3 and 37.8° ± 1.5 respectively). The trunk flexed significantly further forward, confirming results from previous studies. In addition, the craniovertebral angle decreased (p < 0.001) indicating a more forward position of the head with load. It is concluded that the head functions in concert with the trunk to counterbalance load. The higher muscular tensions necessary to sustain these changes have been associated with injury, muscle strain and joint problems.  相似文献   

14.
ABSTRACT

This article proposes a digital elevation model (DEM) generation approach using the Shuttle Radar Topography Mission (SRTM) DEM as the elevation constraint without ground control points. First, during the process of image block adjustment, we took advantage of the relatively high vertical accuracy of the SRTM-DEM in flat terrain regions and applied effective constraints on the object-space elevation-corrected value of tie points using the SRTM-DEM, achieving improved vertical accuracy for large-scale block adjustments. Subsequently, for the DEM matching process, multiple two-linear array stereo image pairs were obtained from along-track and across-track images with different look angles over the same region after the block adjustment. Then, the matching result of each stereo image pair underwent weighted fusion, before being used to generate the final DEM product. This approach can effectively enhance the matching quality and grid density of the final DEM product. The DEM generation experiment, using Ziyuan-3 images covering 186,000 km2 of Hubei Province, China, showed that the matching quality of the 10 m grid DEM was excellent. The vertical root mean square errors were 1.5 m in the flat regions and 2.96 m in the mountainous regions, thus achieving China’s 1:25,000 scale specification requirement for DEM products.  相似文献   

15.
This article presents a comprehensive study of disturbances of the temperature regime of the Earth’s stratosphere, which are related to sudden stratospheric warmings over Western and Eastern Siberia and the Russian Far East in the winters of 2008–2012. This study is based on data obtained using temperature remote-sensing techniques (lidar and satellite ones). The analysis rests on data on vertical temperature distribution in the stratosphere, obtained from lidar measurements over regions of Tomsk (56°N, 85°E), Yakutsk (61°N, 130°E), and Paratunka, the Kamchatka territory (53°N, 158°E). For complex analysis of the spatial–temporal temperature distribution in the middle atmosphere, the lidar measurement data are applied along with satellite data on temperature acquired by the microwave limb sounder on the Earth Observing System Aura satellite. We consider the regional effects of sudden stratospheric warmings that were observed over the Asian region of Russia (~85–160°E) in the winters of 2008–2012. There were stratospheric warmings over the Asian region of Russia each winter during the period under consideration, as deduced from lidar and satellite measurements of temperature. Lidar and satellite measurements of temperature have evidenced the previously known peculiarities of the development of winter stratospheric warmings. On the whole, lidar and satellite measurements of height distribution of temperatures agree. Possible reasons for the divergences under consideration are discussed.  相似文献   

16.
《Ergonomics》2012,55(2):279-292
Abstract

The results of a series of nine experiments over a three-year period arc reported, Experiments One through Six. previously published, indicated that a pedal which actuated an accelerator upon depression of the toe and actuated the brake upon depression of the heel saved 0·2 sec (one car length at 60 mph) over the conventional separate controls.

Experiment Seven investigated the effect on reaction time of: the angle the pedal made with the floor; the force required to actuate the brake control; the force required to actuate the accelerator control; and the seat reference distance. The minimum time was 0·241 see. Little penalty resulted when the pedal angle was between 30 and 40°, brake actuation force was between 13 and 21 lb, accelerator actuation force was between 4 and 8 lb, and seat reference distance was between 4n and 55% of the person's height.

Experiment Eight investigated the effect on reaction time of; the angle the pedal made with the floor; seat height from the floor; the angle of twist of the pedal; and seat reference distance. The minimum time was 0·284 see. Little penalty resulted when the pedal angle was between 30 and 45°, seat height was between 8 and 10 in. from the floor, the angle of twist was between 90 and 104°, and the seat reference distance was between 40 and 50% of the person's height. Experiment Nine investigated, for older subjects, the effect on reaction time of; pedal angle; seat reference distance: and the angle of twist of the pedal. The reaction time of the optimum combination was 0270 sec. The savings of 0-18 sec (versus conventional) for student subjects increases to 0·23 sec for subjects aged 60. Instruction time averaged 30 sec.  相似文献   

17.
Analysis of hybrid polarimetric synthetic aperture radar data has gained importance in the last couple of years with the availability of spaceborne data from Radar Imaging Satellite-1 (RISAT-1). RISAT-1 provides right circular transmit and linear receive data in Fine Resolution Stripmap-1 (FRS-1) mode with a swath of 25 km approximately covering 625 km2 areas. But an administrative unit, like a district, in India cannot be covered in single FRS-1 acquisition. In this article, the possibility of acquisition of multi-incidence angle FRS-1 data to cover a larger area in three consecutive days over Khagaria district of Bihar State, India, for maize crop discrimination and mapping was investigated. It was assumed that the difference of 3 days in imaging does not affect the backscatter response from maize crop as there will not be much change in the maize crop characteristics in 3 days. The backscatter response of maize crop, which is in maximum vegetative stage, was studied at three incidence angles (viz. 28°, 42°, and 52°). The analysis was carried out for the discrimination of maize crop at each incidence angle in Raney derived hybrid decomposition parameters viz. Odd bounce, Double bounce, and Volume scattering mechanisms. The result shows that there is a slight difference in the backscatter response from maize crop due to the changes in incidence angle from 28° to 42° and has not shown any significant difference from 42° to 52°. However, the maize crop got well discriminated in the scatter plots of volume and double bounce scattering at both 28° and 42° and with odd and volume scattering combinations at 52°. The classification of the multi-incidence angle data resulted in 47,732 ha of maize cropped area in Khagaria district during rabi (winter season), 2014–15 with the producer’s accuracy of 92.00%.  相似文献   

18.
《Ergonomics》2012,55(7):1053-1063
The objective of this study was to quantify the effect of lifting height and mass lifted on the peak low back load in terms of net moments, compression forces and anterior–posterior shear forces. Ten participants had to lift a box using four handle heights. Low back loading was quantified using a dynamic 3-D linked segment model and a detailed electromyographic driven model of the trunk musculature. The effects of lifting height and lifting mass were quantified using a regression technique (GEE) for correlated data. Results indicate that an increase in lifting height and a decrease in lifting mass were related to a decrease in low back load. It is argued that trunk flexion is a major contributor to low back load. For ergonomic interventions it can be advised to prioritise optimisation of the vertical location of the load to be lifted rather than decreasing the mass of the load for handle heights between 32 cm and 155 cm, and for load masses between 7.5 and 15 kg. Lifting height and load mass are important determinants of low back load during manual materials handling. This paper provides the quantitative effect of lifting height and mass lifted, the results of which can be used by ergonomists at the workplace to evaluate interventions regarding lifting height and load mass.  相似文献   

19.
《Ergonomics》2012,55(11):1372-1385
This study evaluated how different task factors affect performance and user subjective preferences for three different age groups of Chinese subjects (6–11, 20–23, 65–70 years) when hand writing Chinese characters. The subjects copied Chinese character sentences with different settings for the task factors of writing plane angle (horizontal 0°, slanted 15°), writing direction (horizontal, vertical), and line spacing (5 mm, 7 mm and no lines). Writing speed was measured and subjective preferences (effectiveness and satisfaction) were assessed for each of the task factor settings. The result showed that there was a conflict between writing speed and personal preference for the line spacing factor; 5 mm line spacing increased writing speed but it was the least preferred. It was also found that: vertical and horizontal writing directions and a slanted work surface suited school-aged children; a horizontal work surface and horizontal writing direction suited university students; and a horizontal writing direction with either a horizontal or slanted work surface suited the older adults.  相似文献   

20.
The sensitivity of TerraSAR-X radar signals to surface soil parameters has been examined over agricultural fields, using HH polarization and various incidence angles (26°, 28°, 50°, 52°). The results show that the radar signal is slightly more sensitive to surface roughness at high incidence (50°–52°) than at low incidence (26°–28°). The difference observed in the X-band, between radar signals reflected by the roughest and smoothest areas, reaches a maximum of the order of 5.5 dB at 50°–52°, and 4 dB at 26°–28°. This sensitivity increases in the L-band with PALSAR/ALOS data, for which the dynamics of the return radar signal as a function of soil roughness reach 8 dB at HH38°. In the C-band, ASAR/ENVISAT data (HH and VV polarizations at an incidence angle of 23°) are characterised by a difference of about 4 dB between the signals backscattered by smooth and rough areas.Our results also show that the sensitivity of TerraSAR-X signal to surface roughness decreases in very wet and frozen soil conditions. Moreover, the difference in backscattered signal between smooth and rough fields is greater at high incidence angles. The low-to-high incidence signal ratio (Δσ° = σ26°–28°/σ50°–52°) decreases with surface roughness, and has a dynamic range, as a function of surface roughness, smaller than that of the backscattering coefficients at low and high incidences alone. Under very wet soil conditions (for soil moistures between 32% and 41%), the radar signal decreases by about 4 dB. This decrease appears to be independent of incidence angle, and the ratio Δσ° is found to be independent of soil moisture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号