首页 | 本学科首页   官方微博 | 高级检索  
检索     
共有20条相似文献,以下是第1-20项 搜索用时 312 毫秒

1.  基于双向搜索的最大频繁项目集挖掘算法  
   陈旭辉  蒋红《计算机工程与设计》,2007年第28卷第14期
   结合自底向上与自顶向下的搜索策略,提出一种快速发现最大频繁项目集的算法.该算法利用非频繁项目集对候选最大频繁项目集进行剪枝和降维,减少了候选最大频繁项目集的数量,缩小了搜索空间,提高了算法的效率.算法分析和实验表明,该算法是一种有效、快速的算法.    

2.  快速挖掘最大频繁模式算法  
   王亮  姜丽红《计算机工程与应用》,2006年第42卷第17期
   文章针对挖掘最大频繁项目集问题,提出了一个基于FP-树的快速算法DMFP,该算法引入了FP-树最大深度和非频繁2-项集,采用自顶向下和自底向上的双向搜索策略来预先对候选集进行有效剪枝,该算法的执行效率较其它同类算法有明显改进。    

3.  约束最大频繁项目集的增量式更新算法  
   朱玉全  宋余庆  陈耿《计算机工程》,2004年第30卷第18期
   发现约束频繁(约束最大频繁)项目集是多种数据挖掘应用中的关键问题,目前已有许多算法可用于发现约束频繁(约束最大频繁)项目集,而对约束频繁(约束最大频繁)项目集维护问题的研究工作却很少。因此,需要设计高效的算法来更新、维护和管理已挖掘出来的约束频繁(约束最大频繁)项目集。为此。该文提出了一种快速的增量式更新约束最大频繁项目集算法IUACMFI,并举例说明了算法的执行过程。    

4.  分布式数据库全局最大频繁项集增量更新算法  
   何波  闫河《四川大学学报(工程科学版)》,2012年第44卷第3期
   随着分布式数据库记录的不断增加,需要对已挖掘出的全局最大频繁项集进行增量更新。在已经提出的快速挖掘全局最大频繁项集算法(FMMFI)的基础上,提出了分布式数据库全局最大频繁项集增量更新算法(IUGMFI)。IUGMFI算法利用了FMMFI算法已经挖掘出的分布式数据库全局频繁项目和全局最大频繁项集。挖掘增量数据库的全局频繁项目,构建增量数据库的FP-tree,挖掘出增量数据库的全局最大频繁项集,采用自上而下的剪枝策略更新全局最大频繁项集。理论分析和实验结果表明,IUGMFI算法是快速而有效的。    

5.  快速挖掘分布式数据库全局最大频繁项集  被引次数:1
   何波《控制与决策》,2011年第26卷第8期
   提出一种快速挖掘分布式数据库全局最大频繁项集算法(FMMH).FMMFI算法首先设置了中心节点,并以各个节点构建局部FP-tree,采用挖掘最大频繁项目集算法(DMHA)快速挖掘局部最大频繁项集;然后与中心节点交互以实现数据汇总:最终获得全局最大频繁项集.FMMFI算法采用自上而下的剪枝策略,能大幅减少候选项集,降低通信量.理论分析和实验结果表明,FMMFI算法是有效的.    

6.  基于FP-tree的快速挖掘全局最大频繁项集算法  
   何波《计算机集成制造系统》,2011年第17卷第7期
   挖掘最大频繁项集的算法多基于局部数据库,为此提出了一种基于频繁模式树的快速挖掘全局最大频繁项集算法.该算法首先挖掘出所有全局频繁项目组成集合,然后各个节点根据该集合构建局部频繁模式树,最后将该集合作为全局最大频繁候选项集,采用自顶向下策略挖掘出所有的全局最大频繁项集.与类Apriori算法相比,该算法采用的频繁模式树结构能大幅度降低数据库扫描次数和运行时间;自顶向下的策略能大幅度减少候选项集数和通信量.实验结果表明,该算法是快速和高效的.    

7.  在线挖掘数据流闭频繁项集的高效算法  
   毛伊敏  陈志刚《计算机科学》,2013年第40卷第2期
   数据流闭频繁项集挖掘算法得到了广泛的研究,其中一个典型的工作就是NewMomen、算法。针对New-Moment算法存在搜索空间大而造成算法时间效率低的问题,提出了一种改进的数据流闭频繁项集挖掘算法A-Ncw-Moment。它设计了一个二进制位表示项目与扩展的频繁项目列表相结合的数据结构,来记录数据流信息及闭频繁项集。在窗体初始阶段,首先挖掘频繁1一项集所产生的支持度为最大的最长闭频繁项集,接着提出新的“不需扩展策略”和“向下扩展策略”来避免生成大量中间结果,快速发现其余闭频繁项集,达到极大缩小搜索空间的目的。在窗体滑动阶段,提出“动态不频繁剪枝策略”来从已生成的闭频繁项集中快速删除非闭频繁项集,并提出“动态不搜索策略”来动态维护所有闭频繁项集的生成,以降低闭频繁项集的维护代价,提高算法的效率。理论分析与实验结果表明,A-New-Moment算法具有较好的性能。    

8.  最大频繁项目集的增量式更新算法  
   姜玉泉《计算机工程与应用》,2003年第39卷第24期
   发现最大频繁项目集是多种数据挖掘应用中的关键问题,目前已经提出了许多算法用于发现最大频繁项目集,而对最大频繁项目集维护问题的研究工作却不多,因此,迫切需要设计高效的算法来更新、维护和管理已挖掘出来的最大频繁项目集,为此,该文提出了一种快速的增量式更新最大频繁项目集算法IUAFI,并举例说明了算法的执行过程。    

9.  逆向启发式开采最大频繁项目集  被引次数:1
   杨君锐《计算机工程》,2004年第30卷第14期
   关联规则是当前数据挖掘研究的主要领域之一。发现频繁项目集是关联规则数据开采中的关键问题。该文提出了一种基于最夫频繁项目集的逆向开采算法IDMFI(inverse discovery maximum frequent itemsets),该算法利用频繁项目集的有关特性作为启发信息,采用逆向(即自顶向下)的搜索策略,能够大大减少候选项目集的生成,从而显著地提高了开采效率。    

10.  最大频繁项目集挖掘技术研究与展望  被引次数:2
   钱进《微计算机应用》,2005年第26卷第6期
   提高最大频繁项目集挖掘算法的效率是关联规则挖掘研究一个重点领域.本文主要对影响最大频繁项目集挖掘效率的数据分布、搜索策略、支持度计算及剪枝策略等技术进行了研究,并对已提出的最大频繁项目集挖掘算法进行了分析.    

11.  基于位阵的更新最大频繁项集算法  
   胡斌  蒋外文  蔡国民  黄天强  卓月明《计算机工程》,2007年第33卷第3期
   讨论了最大频繁项集的增量式更新问题,提出最大频繁项目集更新算法FAUMFI,并举例说明了算法的执行过程。该算法充分利用已建立的BitMatrix和已挖掘的最大频繁项目集,对已挖掘的最大频繁项目集进行高效维护。    

12.  一种最大频繁项集快速更新算法*  
   胡斌  蒋外文  黄天强  陈生萍  施渊《计算机应用研究》,2006年第23卷第12期
   系统地介绍了最大频繁项集的增量式更新问题,提出最大频繁项目集更新算法FUMFS,并举例说明了算法的执行过程。该算法充分利用已建立的BitMatrix和已挖掘的最大频繁项目集,对已挖掘的最大频繁项目集进行高效维护。    

13.  一种基于F-矩阵的最大频繁项目集快速挖掘算法  
   杨萍《计算机工程与应用》,2003年第39卷第34期
   最大频繁项目集挖掘是多种数据挖掘应用研究的一个重要方面,最大频繁项目集的快速挖掘算法研究是当前研究的热点。传统的最大频繁项目集挖掘算法要多遍扫描数据库并产生大量的候选项目集。为此,该文提出了基于F-矩阵的最大频繁项目集快速挖掘算法FMMFIBFM,FMMF1BFM采用FP—tree的存储结构,仅须扫描数据库两遍且不产生候选频繁项目集,有效地提高了频繁项目集的挖掘效率.实验结果表明,FMMFIBFM算法是有效可行的    

14.  最大频繁项目集的快速更新  被引次数:28
   吉根林  杨明  宋余庆  孙志挥《计算机学报》,2005年第28卷第1期
   挖掘最大频繁项目集是多种数据挖掘应用中的关键问题.为克服基于Apriori的最大频繁项目集挖掘算法存在的不足,DMFIA采用FP-tree存储结构及自顶向下的搜索策略,有效地提高了最大频繁项目集的挖掘效率.但对于频繁项目多而最大频繁项目集维数相对较小的情况,DMFIA要经过多层搜索且在每一层产生大量的候选项目集,因而影响算法的执行效率.为此,该文提出了DMFIA的改进算法IDMFIA(the Improved algorithm of DMFIA).IDMFIA采用自顶向下和自底向上双向搜索策略,可尽早修剪掉较短最大频繁项目集的超集和较长最大频繁项目集的子集.另外,该文还提出最大频繁项目集更新算法FUMFIA(Fast Updating Maximum Frequent Itemsets Algorithm),该算法充分利用已建立的FP-tree和已挖掘的最大频繁项目集,可对已挖掘的最大频繁项目集进行高效维护.实验结果表明,IDMFIA和FUMFIA可有效提高最大频繁项目集的挖掘和更新效率.    

15.  基于约束的最大频繁项集挖掘算法  
   李芸  李青山《计算机工程与应用》,2007年第43卷第17期
   为了解决目前带约束的频繁项集挖掘算法在具有长模式的密集型数据库中挖掘的不足,提出了一种快速的基于约束的最大频繁项集挖掘算法。该算法在特定约束条件的基础上运用了深度优先策略和有效的剪枝方法快速挖掘最大频繁项集。实验结果表明了该算法是快速有效的。    

16.  快速挖掘全局最大频繁项目集  被引次数:19
   陆介平  杨明  孙志挥  鞠时光《软件学报》,2005年第16卷第4期
   挖掘最大频繁项目集是多种数据挖掘应用中的关键问题.现行可用的最大频繁项目集挖掘算法大多基于单机环境,针对分布式环境下的全局最大频繁项目集挖掘尚不多见.若将基于单机环境的最大频繁项目集挖掘算法运用于分布式环境,或运用分布式环境下的全局频繁项目集挖掘算法来挖掘全局最大频繁项目集,均会产生大量的候选频繁项目集,且网络通信代价高.为此,提出了快速挖掘全局最大频繁项目集算法FMGMFI(fast mining global maximum frequent itemsets),该算法采用FP-tree存储结构,可方便地从各局部FP-tree的相关路径中得到项目集的频度,同时采用自顶向下和自底向上的双向搜索策略,可有效地降低网络通信代价.实验结果表明,FMGMF算法是有效、可行的.    

17.  基于频繁项目集链式存储方法的关联规则算法  
   尹士闪  马增强  毛晚堆《计算机工程与设计》,2012年第33卷第3期
   为了提高经典关联规则Apriori算法的挖掘效率,针对Apriori算法的瓶颈问题,提出了一种链式结构存储频繁项目集并生成最大频繁项目集的关联规则算法.该算法采用比特向量方式存储事务,生成频繁项目集的同时,把包含此频繁项目的事务作为链表连接到频繁项目之后,生成最大频繁项目集.该算法能够减小扫描事物数据库的次数和生成候选项目集的数量,从而减少了生成最大频繁项目集的时间,实验结果表明,该算法提高了运算效率.    

18.  一种基于FP-tree的最大频繁项目集挖掘算法  
   梅俊  郑刚《现代计算机》,2009年第9期
   提出一种基于FP—tree的最大频繁项目挖掘算法DMFIA—D,该算法运用双向搜索策略。根据FP—tree构造特征自顶向下选取最大频繁候选项集,自底向上对候选项集进行计数、剪枝最终确定最大频繁项目集。由于减少了最大频繁候选集,并对候选集进行有效剪枝,从而缩短算法的挖掘时间,提高挖掘效率。    

19.  一种基于频繁模式树的最大频繁项目集挖掘算法  
   任永功  张亮  付玉《小型微型计算机系统》,2010年第31卷第2期
   目前提出的频繁项目集挖掘算法大多基于Apriori算法思想,这类算法会产生巨大的候选集并且重复扫描数据库.针对这一问题,给出一种基于频繁模式树的最大频繁项目集挖掘算法FP-MFIA,该算法利用频繁模式树对最大频繁项目集进行检索,通过位图建树的方法有效的减少了扫描数据库的次数,从而节省了CPU的执行时间.另外,此算法运用独特的最大频繁项目集判断策略,同时运用投影技术进行超集检测,提高了遍历的效率,实验结果表明该算法是快速有效的.    

20.  基于频繁模式树的最大频繁模式挖掘算法  
   缪裕青《桂林电子工业学院学报》,2004年第24卷第3期
   为减少高昂的计算代价,用挖掘最大频繁模式集代替挖掘频繁模式集是近年来提出的一个重要研究策略。由最大频繁模式集可求出所有频繁模式,但数量上却可以小几个数量级,从而可大大减少计算代价。通过对最大频繁模式挖掘的问题描述,以及关键问题的分析,针对频繁模式树(FP-tree)和最大频繁模式的特点,给出了基于频繁模式树的最大频繁模式挖掘算法(MMFP),采取先挖掘候选最大频繁模式再判断子集的方法,经示例分析表明该算法是有效的。提出的单路径修剪和项目修剪等修剪方法大大减少了侯选最大频繁模式的个数,对算法的性能提高起到了关键作用。    

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号