首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 218 毫秒
1.
Without assuming that the mobile agents can communicate with their neighbors all the time, the consensus problem of multi‐agent systems with general linear node dynamics and a fixed directed topology is investigated. To achieve consensus, a new class of distributed protocols designed based only on the intermittent relative information are presented. By using tools from matrix analysis and switching systems theory, it is theoretically shown that the consensus in multi‐agent systems with a periodic intermittent communication and directed topology containing a spanning tree can be cast into the stability of a set of low‐dimensional switching systems. It is proved that there exists a protocol guaranteeing consensus if each agent is stabilizable and the communication rate is larger than a threshold value. Furthermore, a multi‐step intermittent consensus protocol design procedure is provided. The consensus algorithm is then extended to solve the formation control problem of linear multi‐agent systems with intermittent communication constraints as well as the consensus tracking problem with switching directed topologies. Finally, some numerical simulations are provided to verify the effectiveness of the theoretical results. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
In this paper, the leader‐following consensus problem of uncertain high‐order nonlinear multi‐agent systems on directed graph with a fixed topology is studied, where it is assumed that the relative states of a follower and its neighbors are immeasurable and only the relative outputs are available. Nonlinear adaptive observers are firstly proposed for each follower to estimate the states of it and its neighbors, and an observer‐based distributed adaptive control scheme is constructed to guarantee that all followers asymptotically synchronize to a leader with tracking errors being semi‐globally uniform ultimate bounded. On the basis of algebraic graph theory and Lyapunov theory, the closed‐loop system stability analysis is conducted. Finally, numerical simulations are presented to illustrate the effectiveness and potential of the proposed new design techniques. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

3.
This paper investigates consensus strategies for a group of agents with discrete second‐order dynamics under directed communication topology. Consensus analysis for both the fixed topology and time‐varying topology cases is systematically performed by employing a novel graph theoretic methodology as well as the classical nonnegative matrix theory. Furthermore, it is shown that the necessary and sufficient condition for the agents under fixed communication topology to reach consensus is that the communication topology has a spanning tree; and sufficient conditions for the agents to reach consensus when allowing for the dynamically changing communication topologies are also given. Finally, an illustrative example is provided to demonstrate the effectiveness of the proposed results. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
In this paper, we consider the consensus problem of discrete‐time multi‐agent systems with multiplicative communication noises. Each agent can only receive information corrupted by noises from its neighbors and/or a reference node. The intensities of these noises are dependent on the relative states of agents. Under some mild assumptions of the noises and the structure of network, consensus is analyzed under a fixed topology, dynamically switching topologies and randomly switching topologies, respectively. By combining algebraic graph theory and martingale convergence theorem, sufficient conditions for mean square and almost sure consensus are given. Further, when the consensus is achieved without a reference, it is shown that the consensus point is a random variable with its expectation being the average of the initial states of the agents and its variance being bounded. If the multi‐agent system has access to the state of the reference, the state of each agent can asymptotically converge to the reference. Numerical examples are given to illustrate the effectiveness of our results. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
This paper is concerned with the problem of seeking consensus for a network of agents under a fixed or switching directed communication topology. Each agent is modeled as discrete‐time first‐order dynamics and interacts with its neighbors via logarithmically quantized information. We assume that the digraph is not necessarily balanced and, thus, avoiding the double stochasticity requirement for the adjacency matrix. For the case of a fixed topology that is strongly connected, it is shown that the proposed protocol is admissible for arbitrarily coarse logarithmic quantization and the β‐asymptotic weighted‐average consensus is achieved. For the case of a switching topology that is periodically strongly connected, it is shown that the proposed protocol is admissible for arbitrarily coarse quantization and the β‐asymptotic consensus is achieved. Furthermore, for both cases, not only are the convergence rates for consensus specified but also the bounds on the consensus error that highlight their dependence on the sector bound β of the logarithmic quantizer are also provided. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
This paper is concerned with the distributed control problem of second‐order agents under directed network topology. The control input of each agent only depends on its own state and the states of its neighbors corrupted by white noises. By using the algebraic graph theory and stochastic analysis method, necessary and sufficient conditions are presented for mean square bounded tracking. Finally, several simulation examples are given to illustrate the results. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
In this paper, we consider the consensus problem for heterogeneous multi‐agent systems composed of some first‐order and some second‐order dynamic agents in directed communication graphs. Consensus protocols are proposed for the second‐ and first‐order dynamic agents, respectively. Under certain assumptions on the control parameters, for fixed communication topologies, necessary and sufficient conditions for consensus are given, and the consensus values of all agents are established. For switching topologies, sufficient conditions are given for all agents to reach consensus. Finally, simulation examples are presented to demonstrate the effectiveness of the proposed methods. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
In this paper, the consensus control problems for multi‐agent systems under double integrator dynamics with time‐varying communication delays are investigated. We assume that the interaction graphs among agents are directed. Two kinds of protocols are considered. One is an absolute damping protocol, and the other is a relative damping protocol. For the first protocol, Lyapunov–Razumikhin functional techniques are used. We derive sufficient conditions that guarantee that all agents asymptotically reach consensus under fixed topology and switching topology, respectively. Moreover, the allowable upper bound for communication delays is given. For the second protocol, Lyapunov–Krasovskii functional techniques are used. Linear matrix inequality (LMI)‐form sufficient conditions are obtained to guarantee the consensus problems to be solved under fixed topology and switching topology, respectively. The allowable upper bound for communication delays is given as well. The feasibilities of the demanded LMIs are also discussed. Finally, numerical simulations are provided to illustrate the effectiveness of our theoretical results. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
The consensus problem is investigated in this paper for a class of multi‐agent systems with general linear node dynamics and directed communication topologies. A new distributed observer‐type consensus protocol is designed based only on the relative output measurements of neighboring agents. Compared with existing observer‐type protocols, the one presented here does not require information about the relative states of the observers. Tools from small gain theory and matrix analysis, some sufficient conditions are obtained for achieving consensus in such multi‐agent systems where the underlying network topology contains a directed spanning tree. Finally, some numerical examples including an application in low‐Earth‐orbit satellite formation flying are provided to illustrate the theoretical results.  相似文献   

10.
This paper studies regulated state synchronization for continuous‐time homogeneous multiagent systems with weakly unstable agents where the reference trajectory is given by a so‐called exosystem. The agents share part of their state over a communication network. We assume that the communication topology is completely unknown and directed. An algebraic Riccati equation–based low‐gain adaptive nonlinear dynamic protocol design is presented to achieve the regulated state synchronizations. Utilizing the adaptive control, our nonlinear dynamic protocol is universal and does not depend on any information about the communication topology or the number of agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号