首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
Xin He  Yaacov Yesha 《Algorithmica》1990,5(1-4):129-145
We develop efficient parallel algorithms for ther-dominating set and thep-center problems on trees. On a concurrent-read exclusive-write PRAM, our algorithm for ther-dominating set problem runs inO(logn log logn) time withn processors. The algorithm for thep-center problem runs inO(log2 n log logn) time withn processors.  相似文献   

2.
Xin He  Yaacov Yesha 《Algorithmica》1990,5(1):129-145
We develop efficient parallel algorithms for ther-dominating set and thep-center problems on trees. On a concurrent-read exclusive-write PRAM, our algorithm for ther-dominating set problem runs inO(logn log logn) time withn processors. The algorithm for thep-center problem runs inO(log2 n log logn) time withn processors.Xin He was supported in part by an Ohio State University Presidential Fellowship, and by the Office of Research and Graduate Studies of Ohio State University. Yaacov Yesha was supported in part by the National Science Foundation under Grant No. DCR-8606366.  相似文献   

3.
We give an improved parallel algorithm for the problem of computing the tube minima of a totally monotonen ×n ×n matrix, an important matrix searching problem that was formalized by Aggarwal and Park and has many applications. Our algorithm runs inO(log logn) time withO(n2/log logn) processors in theCRCW-PRAM model, whereas the previous best ran inO((log logn)2) time withO(n2/(log logn)2 processors, also in theCRCW-PRAM model. Thus we improve the speed without any deterioration in thetime ×processors product. Our improved bound immediately translates into improvedCRCW-PRAM bounds for the numerous applications of this problem, including string editing, construction of Huffmann codes and other coding trees, and many other combinatorial and geometric problems.This research was supported by the Office of Naval Research under Grants N00014-84-K-0502 and N00014-86-K-0689, the Air Force Office of Scientific Research under Grant AFOSR-90-0107, the National Science Foundation under Grant DCR-8451393, and the National Library of Medicine under Grant R01-LM05118. Part of the research was done while the author was at Princeton University, visiting the DIMACS center.  相似文献   

4.
The recurrencex o =a o x i =a i+b i x i–1,i = 1, 2,...,n–1 requiresO(n) operations on a sequential computer. Elegant parallel solutions exist, however, that reduce the complexity toO(logN) usingNn processors. This paper discusses one such solution, designed for a tree-structured network of processors.A tree structure is ideal for solving recurrences. It takes exactly one sweep up and down the tree to solve any of several classes of recurrences, thus guaranteeing a solution inO(logN) time for a tree withNn leaf nodes. Ifn exceedsN, the algorithm efficiently pipelines the operation and solves the recurrence inO(n/N + logN) time.  相似文献   

5.
A stringw isprimitive if it is not a power of another string (i.e., writingw =v k impliesk = 1. Conversely,w is asquare ifw =vv, withv a primitive string. A stringx issquare-free if it has no nonempty substring of the formww. It is shown that the square-freedom of a string ofn symbols over an arbitrary alphabet can be tested by a CRCW PRAM withn processors inO(logn) time and linear auxiliary space. If the cardinality of the input alphabet is bounded by a constant independent of the input size, then the number of processors can be reduced ton/logn without affecting the time complexity of this strategy. The fastest sequential algorithms solve this problemO(n logn) orO(n) time, depending on whether the cardinality of the input alphabet is unbounded or bounded, and either performance is known to be optimal within its class. More elaborate constructions lead to a CRCW PRAM algorithm for detecting, within the samen-processors bounds, all positioned squares inx in timeO(logn) and using linear auxiliary space. The fastest sequential algorithms solve this problem inO(n logn) time, and such a performance is known to be optimal.This research was supported, through the Leonardo Fibonacci Institute, by the Istituto Trentino di Cultura, Trento, Italy. Additional support was provided by the French and Italian Ministries of Education, by the National Research Council of Italy, by the British Research Council Grant SERC-E76797, by NSF Grant CCR-89-00305, by NIH Library of Medicine Grant ROI LM05118, by AFOSR Grant 90-0107, and by NATO Grant CRG900293.  相似文献   

6.
Xin He 《Algorithmica》1990,5(1):545-559
We present an efficient algorithm for 4-coloring perfect planar graphs. The best previously known algorithm for this problem takesO(n 3/2) sequential time, orO(log4 n) parallel time withO(n3) processors. The sequential implementation of our algorithm takesO(n logn) time. The parallel implementation of our algorithm takesO(log3 n) time withO(n) processors on a PRAM.  相似文献   

7.
We introduce a generic problem component that captures the most common, difficult kernel of many problems. This kernel involves general prefix computations (GPC). GPC's lower bound complexity of (n logn) time is established, and we give optimal solutions on the sequential model inO(n logn) time, on the CREW PRAM model inO(logn) time, on the BSR (broadcasting with selective reduction) model in constant time, and on mesh-connected computers inO(n) time, all withn processors, plus anO(log2 n) time solution on the hypercube model. We show that GPC techniques can be applied to a wide variety of geometric (point set and tree) problems, including triangulation of point sets, two-set dominance counting, ECDF searching, finding two-and three-dimensional maximal points, the reconstruction of trees from their traversals, counting inversions in a permutation, and matching parentheses.work partially supported by NSF IRI/8709726work partially supported by NSERC.  相似文献   

8.
He  Xin 《Algorithmica》1990,5(1-4):545-559

We present an efficient algorithm for 4-coloring perfect planar graphs. The best previously known algorithm for this problem takesO(n 3/2) sequential time, orO(log4 n) parallel time withO(n3) processors. The sequential implementation of our algorithm takesO(n logn) time. The parallel implementation of our algorithm takesO(log3 n) time withO(n) processors on a PRAM.

  相似文献   

9.
Parallel integer sorting using small operations   总被引:1,自引:0,他引:1  
We consider the problem of sortingn integers in the range [0,n c -1], wherec is a constant. It has been shown by Rajasekaran and Sen [14] that this problem can be solved optimally inO(logn) steps on an EREW PRAM withO(n) n -bit operations, for any constant >O. Though the number of operations is optimal, each operation is very large. In this paper, we show thatn integers in the range [0,n c -1] can be sorted inO(logn) time withO(nlogn)O(1)-bit operations andO(n) O(logn)-bit operations. The model used is a non-standard variant of an EREW PRAMtthat permits processors to have word-sizes ofO(1)-bits and (logn)-bits. Clearly, the speed of the proposed algorithm is optimal. Considering that the input to the problem consists ofO (n logn) bits, the proposed algorithm performs an optimal amount of work, measured at the bit level.This work was partially supported by The Northeast Parallel Architectures Center (NPAC) at Syracuse University, Syracuse, NY 13244 and The Rome Air Development Center, under contract F30602-88-D-0027.  相似文献   

10.
This paper presents an optimal parallel algorithm for triangulating an arbitrary set ofn points in the plane. The algorithm runs inO(logn) time usingO(n) space andO(n) processors on a Concurrent-Read, Exclusive-Write Parallel RAM model (CREW PRAM). The parallel lower bound on triangulation is (logn) time so the best possible linear speedup has been achieved. A parallel divide-and-conquer technique of subdividing a problem into subproblems is employed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号