首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 485 毫秒
1.
An efficient evolutionary algorithm is presented for shape optimization of transonic airfoils. Several techniques have been used to improve the efficiency and convergence rate of the optimization Genetic Algorithm (GA). A new airfoil shape parameterization method is used which is capable of producing more efficient shapes at viscous flow conditions. A Real-Coded Population Dispersion (PD) Genetic Algorithm is developed in order to increase the robustness and convergence rate of the Genetic Algorithm. A Multi-Layer Perceptron Neural Network (NN) is utilized to reduce the huge computational cost of the objective function evaluation. Further improvement in the performance of NN is obtained by using dynamic retraining and normal distribution of the training data to determine well trained parts of the design space to NN. Using the above techniques, the total computational time of optimization algorithm is reduced up to 60% compared with the conventional GA.  相似文献   

2.
A novel optimal proportional integral derivative (PID) autotuning controller design based on a new algorithm approach, the “swarm learning process” (SLP) algorithm, is proposed. It improves the convergence and performance of the autotuning PID parameter by applying the swarm and learning algorithm concepts. Its convergence is verified by two methods, global convergence and characteristic convergence. In the case of global convergence, the convergence rule of a random search algorithm is employed to judge, and Markov chain modelling is used to analyse. The superiority of the proposed method, in terms of characteristic convergence and performance, is verified through the simulation based on the automatic voltage regulator and direct current motor control system. Verification is performed by comparing the results of the proposed model with those of other algorithms, that is, the ant colony optimization with a new constrained Nelder–Mead algorithm, the genetic algorithm (GA), the particle swarm optimization (PSO) algorithm, and a neural network (NN). According to the global convergence analysis, the proposed method satisfies the convergence rule of the random search algorithm. With respect to the characteristic convergence and performance, the proposed method provides a better response than the GA, the PSO, and the NN for both control systems.  相似文献   

3.
飞轮电池储能用集成电机时变非线性特点使得传统PID控制难以得到理想的控制性能,为此基于BP神经网络研究了一种新颖的飞轮电池电力转换器。该控制器结合BP神经网络自学习能力和PID控制的全局渐近稳定性能,通过神经网络在线优化调节PID参数,以实现对飞轮电池的高性能控制。其中,采用变学习速率的神经网络学习算法,学习速率随收敛过程误差的大小而自适应地进行调整,同时使用遗传算法(GA)优化得到PID参数的初始值,这可加快神经网络学习训练的收敛速度并避免陷入局部最小,进一步提高控制性能;另外,PWM采用SVPWM技术以增强能量转换效率和减小转矩脉动。数字仿真表明,基于所提出的BP-PID控制的电力转换矢量控制系统能够使飞轮电池在充放电两端都具有较快动态响应,较小超调,较高稳态精度以及较强的鲁棒性,控制效果明显比传统PID好。  相似文献   

4.
基于QPSO算法的RBF神经网络参数优化仿真研究   总被引:8,自引:2,他引:8  
陈伟  冯斌  孙俊 《计算机应用》2006,26(8):1928-1931
针对粒子群优化(PSO)算法搜索空间有限,容易陷入局部最优点的缺陷,提出一种以量子粒子群优化(QPSO)算法为基础的RBF神经网络训练算法,将RBF神经网络的参数组成一个多维向量,作为算法中的粒子进行进化,由此在可行解空间范围内搜索最优解。实例仿真表明,该学习算法相比于传统的学习算法计算简单,收敛速度快,并由于其算法模型的自身特性比基于PSO的学习算法具有更好的全局收敛性能。  相似文献   

5.
S. Jagannathan  F.L. Lewis 《Automatica》1996,32(12):1707-1712
A novel multilayer discrete-time neural net paradigm is presented for the identification of multi-input multi-output (MIMO) nonlinear dynamical systems. The major novelty of this approach is a rigorous proof of identification error convergence that reveals a requirement for a new identifier structure and nonstandard weight tuning algorithms. The NN identifier includes modified delta rule weight tuning and exhibits a learning-while-functioning feature instead of learning-then-functioning, so that the identification is on-line with no explicit off-line learning phase needed. The structure of the neural net (NN) identifier is derived using a passivity aproach. Linearity in the parameters is not required and certainty equivalence is not used. The notion of persistency of excitation (PE) and passivity properties of the multilayer NN are defined and used in the convergence analysis of both the identification error and the weight estimates.  相似文献   

6.
This paper addresses the robust trajectory tracking problem for a redundantly actuated omnidirectional mobile manipulator in the presence of uncertainties and disturbances. The development of control algorithms is based on sliding mode control (SMC) technique. First, a dynamic model is derived based on the practical omnidirectional mobile manipulator system. Then, a SMC scheme, based on the fixed large upper boundedness of the system dynamics (FLUBSMC), is designed to ensure trajectory tracking of the closed-loop system. However, the FLUBSMC scheme has inherent deficiency, which needs computing the upper boundedness of the system dynamics, and may cause high noise amplification and high control cost, particularly for the complex dynamics of the omnidirectional mobile manipulator system. Therefore, a robust neural network (NN)-based sliding mode controller (NNSMC), which uses an NN to identify the unstructured system dynamics directly, is further proposed to overcome the disadvantages of FLUBSMC and reduce the online computing burden of conventional NN adaptive controllers. Using learning ability of NN, NNSMC can coordinately control the omnidirectional mobile platform and the mounted manipulator with different dynamics effectively. The stability of the closed-loop system, the convergence of the NN weight-updating process, and the boundedness of the NN weight estimation errors are all strictly guaranteed. Then, in order to accelerate the NN learning efficiency, a partitioned NN structure is applied. Finally, simulation examples are given to demonstrate the proposed NNSMC approach can guarantee the whole system's convergence to the desired manifold with prescribed performance.  相似文献   

7.
The use of neuron-like networks (NN) for pattern recognition has a well-established history and numerous current applications. Most such applications are to static patterns while the theory developed for temporally changing visual patterns usually assumes rigid objects with well-defined boundaries. In applications such as analysis of cardiac movement, however, the object is flexible and the images are often imperfect. the authors current model for NN activity captures the dynamic nature of the signal processing of the neural dendritic tree, allowing both faster learning of dynamic patterns and a very reduced number of receptors required for distinguishing diverse types of motion or changes. the design of the NN model is presented and a training algorithm which exhibits in practice extremely fast convergence (as few as 15 iterations) to near optimal recognition behavior is introduced. © 1993 John Wiley & Sons, Inc.  相似文献   

8.

In this paper, an adaptive swarm learning process (SLP) algorithm for designing the optimal proportional integral and derivative (PID) parameter for a multiple-input multiple-output (MIMO) control system is proposed. The SLP algorithm is proposed to improve the performance and convergence of PID parameter autotuning by applying the swarm algorithm and the learning process. The adaptive SLP algorithm improves the stability, performance and robustness of the traditional SLP algorithm to apply it to a MIMO control system. It can update the online weights of the SLP algorithm caused by the errors in the settling time, rise time and overshoot of the system based on a stable learning rate. The gradient descent is applied to update the weights. The stable learning rate is verified based on the Lyapunov stability theorem. Additionally, simulations are performed to verify the superiority of the algorithm in terms of performance and robustness. Results that compare the adaptive SLP algorithm with the traditional SLP, a neural network (NN), the genetic algorithm (GA), the particle swarm and optimization (PSO) algorithm and the kidney-inspired algorithm (KIA) based on a two-wheel inverted pendulum system are presented. With respect to performance and robustness, the adaptive SLP algorithm provides a better response than the traditional SLP, NN, GA, PSO and KIA.

  相似文献   

9.
Neural networks for advanced control of robot manipulators   总被引:7,自引:0,他引:7  
Presents an approach and a systematic design methodology to adaptive motion control based on neural networks (NNs) for high-performance robot manipulators, for which stability conditions and performance evaluation are given. The neurocontroller includes a linear combination of a set of off-line trained NNs, and an update law of the linear combination coefficients to adjust robot dynamics and payload uncertain parameters. A procedure is presented to select the learning conditions for each NN in the bank. The proposed scheme, based on fixed NNs, is computationally more efficient than the case of using the learning capabilities of the neural network to be adapted, as that used in feedback architectures that need to propagate back control errors through the model to adjust the neurocontroller. A practical stability result for the neurocontrol system is given. That is, we prove that the control error converges asymptotically to a neighborhood of zero, whose size is evaluated and depends on the approximation error of the NN bank and the design parameters of the controller. In addition, a robust adaptive controller to NN learning errors is proposed, using a sign or saturation switching function in the control law, which leads to global asymptotic stability and zero convergence of control errors. Simulation results showing the practical feasibility and performance of the proposed approach to robotics are given.  相似文献   

10.
The shape from shading problem refers to the well-known fact that most real images usually contain specular components and are affected by unknown reflectivity. In this paper, these limitations are addressed and a new neural-based 3D shape reconstruction model is proposed. The idea behind this approach is to optimize a proper reflectance model by learning the parameters of the proposed neural reflectance model. In order to do this, new neural-based reflectance models are presented. The feedforward neural network (FNN) model is able to generalize the diffuse term, while the RBF model is able to generalize the specular term. A hybrid structure of FNN-based and RBF-based models is also presented because most real surfaces are usually neither Lambertian models nor ideally specular models. Experimental results, including synthetic and real images, are presented to demonstrate the performance of our approach given different specular effects, unknown illuminate conditions, and different noise environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号