首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
In this paper, we design time–frequency localized three-band biorthogonal linear phase wavelet filter bank for epileptic seizure electroencephalograph (EEG) signal classification. Time–frequency localized analysis and synthesis low-pass filters (LPF) are designed using convex semidefinite programming (SDP) by transforming a nonconvex problem into a convex SDP using semidefinite relaxation technique. Three-band parameterized lattice biorthogonal linear phase perfect reconstruction filter bank (BOLPPRFB) is chosen and nonlinear least squares algorithm is used to determine its parameters values that generate the designed analysis and synthesis LPF such that the band-pass and high-pass filters are also well localized in time and frequency domain. The designed analysis and synthesis three-band wavelet filter banks are compared with the standard two-band filter banks like Daubechies maximally regular filter banks, Cohen–Daubechies–Feauveau (CDF) biorthogonal filter banks and orthogonal time–frequency localized filter banks. Kruskal–Wallis statistical test is employed to measure the statistical significance of the subband features obtained from the various two and three-band filter banks for epileptic seizure EEG signal classification. The results show that the designed three-band analysis and synthesis filter banks both outperform two-band filter banks in the classification of seizure and seizure-free EEG signals. The designed three-band filter banks and multi-layer perceptron neural network (MLPNN) are further used together to implement a signal classifier that provides classification accuracy better than the recently reported results for epileptic seizure EEG signal classification.  相似文献   

2.
Mixture of experts (ME) is modular neural network architecture for supervised learning. A double-loop Expectation-Maximization (EM) algorithm has been introduced to the ME network structure for detection of epileptic seizure. The detection of epileptiform discharges in the EEG is an important component in the diagnosis of epilepsy. EEG signals were decomposed into the frequency sub-bands using discrete wavelet transform (DWT). Then these sub-band frequencies were used as an input to a ME network with two discrete outputs: normal and epileptic. In order to improve accuracy, the outputs of expert networks were combined according to a set of local weights called the “gating function”. The invariant transformations of the ME probability density functions include the permutations of the expert labels and the translations of the parameters in the gating functions. The performance of the proposed model was evaluated in terms of classification accuracies and the results confirmed that the proposed ME network structure has some potential in detecting epileptic seizures. The ME network structure achieved accuracy rates which were higher than that of the stand-alone neural network model.  相似文献   

3.
Epilepsy is a neurological disorder which is characterized by transient and unexpected electrical disturbance of the brain. The electroencephalogram (EEG) is a commonly used signal for detection of epileptic seizures. This paper presents a new method for classification of ictal and seizure-free EEG signals. The proposed method is based on the empirical mode decomposition (EMD) and the second-order difference plot (SODP). The EMD method decomposes an EEG signal into a set of symmetric and band-limited signals termed as intrinsic mode functions (IMFs). The SODP of IMFs provides elliptical structure. The 95% confidence ellipse area measured from the SODP of IMFs has been used as a feature in order to discriminate seizure-free EEG signals from the epileptic seizure EEG signals. The feature space obtained from the ellipse area parameters of two IMFs has been used for classification of ictal and seizure-free EEG signals using the artificial neural network (ANN) classifier. It has been shown that the feature space formed using ellipse area parameters of first and second IMFs has given good classification performance. Experimental results on EEG database available by the University of Bonn, Germany, are included to illustrate the effectiveness of the proposed method.  相似文献   

4.
现有癫痫发作预测方法存在精度较低、错误报警率较高、癫痫患者睡眠脑电特异性、致痫灶位置和类型不同导致脑电信号存在差异的问题.文中提出基于深度神经网络的个性化睡眠癫痫发作预测方法,帮助医生和患者采取及时有效的治疗措施,降低患者患并发症和猝死的概率.对原始脑电信号滤波和分段以去除噪声,保证短时间内触发警报,利用离散小波变换分解信号并提取统计特征表征脑电信号时频特征.再应用双向长短期记忆网络挖掘最具鉴别能力的特征并结合留一法分类,经过决策过程优化得到预测结果.在不同频带限制条件下的实验表明,与睡眠癫痫相关的δ频带信号是影响发作预测性能的重要因素.相比现有睡眠癫痫预测方法,文中方法性能较优.  相似文献   

5.
Epileptic EEG detection using neural networks and post-classification   总被引:1,自引:0,他引:1  
Electroencephalogram (EEG) has established itself as an important means of identifying and analyzing epileptic seizure activity in humans. In most cases, identification of the epileptic EEG signal is done manually by skilled professionals, who are small in number. In this paper, we try to automate the detection process. We use wavelet transform for feature extraction and obtain statistical parameters from the decomposed wavelet coefficients. A feed-forward backpropagating artificial neural network (ANN) is used for the classification. We use genetic algorithm for choosing the training set and also implement a post-classification stage using harmonic weights to increase the accuracy. Average specificity of 99.19%, sensitivity of 91.29% and selectivity of 91.14% are obtained.  相似文献   

6.
Seizure detection and classification using signal processing methods has been an important issue of research for the last two decades. In the present study, a novel scheme was presented to detect epileptic seizure activity with very fast and highest accuracy from background electro encephalogram (EEG) data recorded from epileptic and normal subjects. The proposed scheme is based on discrete wavelet packet transform (DWT) with energy, entropy, standard deviation, mean, kurtosis, skewness and entropy estimation at each node of the decomposition tree followed by application of probabilistic neural network (PNN). Normal as well as epileptic EEG epochs were decomposed into approximation and details coefficients till sixth-level using DWT packet. Discrete harmony search with modified differential operator was used to select the optimal features out of all above mentioned statistical and non-statistical parameters. In order to demonstrate the efficacy of the proposed algorithm for classification purpose using PNN, we have implemented 10-fold cross validation. Clinical EEG data recorded from normal as well as epileptic subjects are used to test the performance of this new scheme. It is found that the detection rate is 100% accurate with same level of sensitivity and specificity.  相似文献   

7.
癫痫的发作会给患者的身体和精神造成极大的创伤,对癫痫发作的准确预测可以及时协助医生对患者采取治疗措施.为了准确预测癫痫发作,提出脑电特征和多通道脑电交互特征相融合的癫痫发作预测方法.首先,提出多尺度符号化排列传递熵对多通道脑电信号交互信息进行分析,生成同步矩阵,并通过显著性分析筛选与癫痫发作相关的重要脑电通道,减少不必要特征对分类的干扰;然后,对筛选通道后的脑电信号生成表征脑电信号特征的功率谱密度能量图(PSDED)和描述脑通道交互特征的同步矩阵图(SMD),将两个特征图融合,采用深度卷积神经网络(DCNN)对癫痫患者脑电信号进行分类识别,提高学习能力和泛化能力,分类准确率可达到96.825%;最后,在分类的基础上采用预测评价系统对癫痫发作预测性能进行评估,癫痫发作预测范围(SPH)为10 min和发作发生期(SOP)为10 min时,预测敏感性达到96.66%,误检率可达到0.03/h;当SPH为30min,SOP为10 min时,预测敏感性达到93.17%,误检率可达到0.05/h.与现有研究结果相比较,所提出方法具有较好的预测敏感度和较低的误检率.  相似文献   

8.
Wang  Qinghua  Wei  Hua-Liang  Wang  Lina  Xu  Song 《Neural computing & applications》2021,33(11):5525-5541
Neural Computing and Applications - Electroencephalogram (EEG) signal analysis plays an essential role in detecting and understanding epileptic seizures. It is known that seizure processes are...  相似文献   

9.
Epilepsy is one of the most common neurological disorders characterized by transient and unexpected electrical disturbance of the brain. The electroencephalogram (EEG) is an invaluable measurement for the purpose of assessing brain activities, containing information relating to the different physiological states of the brain. It is a very effective tool for understanding the complex dynamical behavior of the brain. This paper presents the application of empirical mode decomposition (EMD) for analysis of EEG signals. The EMD decomposes a EEG signal into a finite set of bandlimited signals termed intrinsic mode functions (IMFs). The Hilbert transformation of IMFs provides analytic signal representation of IMFs. The area measured from the trace of the analytic IMFs, which have circular form in the complex plane, has been used as a feature in order to discriminate normal EEG signals from the epileptic seizure EEG signals. It has been shown that the area measure of the IMFs has given good discrimination performance. Simulation results illustrate the effectiveness of the proposed method.  相似文献   

10.
Epileptic seizures are manifestations of epilepsy. Careful analyses of the electroencephalograph (EEG) records can provide valuable insight and improved understanding of the mechanisms causing epileptic disorders. The detection of epileptiform discharges in the EEG is an important component in the diagnosis of epilepsy. As EEG signals are non-stationary, the conventional method of frequency analysis is not highly successful in diagnostic classification. This paper deals with a novel method of analysis of EEG signals using wavelet transform and classification using artificial neural network (ANN) and logistic regression (LR). Wavelet transform is particularly effective for representing various aspects of non-stationary signals such as trends, discontinuities and repeated patterns where other signal processing approaches fail or are not as effective. Through wavelet decomposition of the EEG records, transient features are accurately captured and localized in both time and frequency context. In epileptic seizure classification we used lifting-based discrete wavelet transform (LBDWT) as a preprocessing method to increase the computational speed. The proposed algorithm reduces the computational load of those algorithms that were based on classical wavelet transform (CWT). In this study, we introduce two fundamentally different approaches for designing classification models (classifiers) the traditional statistical method based on logistic regression and the emerging computationally powerful techniques based on ANN. Logistic regression as well as multilayer perceptron neural network (MLPNN) based classifiers were developed and compared in relation to their accuracy in classification of EEG signals. In these methods we used LBDWT coefficients of EEG signals as an input to classification system with two discrete outputs: epileptic seizure or non-epileptic seizure. By identifying features in the signal we want to provide an automatic system that will support a physician in the diagnosing process. By applying LBDWT in connection with MLPNN, we obtained novel and reliable classifier architecture. The comparisons between the developed classifiers were primarily based on analysis of the receiver operating characteristic (ROC) curves as well as a number of scalar performance measures pertaining to the classification. The MLPNN based classifier outperformed the LR based counterpart. Within the same group, the MLPNN based classifier was more accurate than the LR based classifier.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号