首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Information Retrieval (IR) forms the basis of many information management tasks. Information management itself has become an extremely important area as the amount of electronically available information increases dramatically. There are numerous methods of performing the IR task both by utilising different techniques and through using different representations of the information available to us. It has been shown that some algorithms outperform others on certain tasks. Combining the results produced by different algorithms has resulted in superior retrieval performance and this has become an important research area. This paper introduces a probability-based fusion technique probFuse that shows initial promise in addressing this question. It also compares probFuse with the common CombMNZ data fusion technique.  相似文献   

2.
目的 针对红外与可见光图像融合时易产生边缘细节信息丢失、融合结果有光晕伪影等问题,同时为充分获取多源图像的重要特征,将各向异性导向滤波和相位一致性结合,提出一种红外与可见光图像融合算法。方法 首先,采用各向异性导向滤波从源图像获得包含大尺度变化的基础图和包含小尺度细节的系列细节图;其次,利用相位一致性和高斯滤波计算显著图,进而通过对比像素显著性得到初始权重二值图,再利用各向异性导向滤波优化权重图,达到去除噪声和抑制光晕伪影;最后,通过图像重构得到融合结果。结果 从主客观两个方面,将所提方法与卷积神经网络(convolutional neural network,CNN)、双树复小波变换(dual-tree complex wavelet transform,DTCWT)、导向滤波(guided filtering,GFF)和各向异性扩散(anisotropic diffusion,ADF)等4种经典红外与可见光融合方法在TNO公开数据集上进行实验对比。主观分析上,所提算法结果在边缘细节、背景保存和目标完整度等方面均优于其他4种方法;客观分析上,选取互信息(mutual information,MI)、边缘信息保持度(degree of edge information,QAB/F)、熵(entropy,EN)和基于梯度的特征互信息(gradient based feature mutual information,FMI_gradient)等4种图像质量评价指数进行综合评价。相较于其他4种方法,本文算法的各项指标均有一定幅度的提高,MI平均值较GFF提高了21.67%,QAB/F平均值较CNN提高了20.21%,EN平均值较CNN提高了5.69%,FMI_gradient平均值较GFF提高了3.14%。结论 本文基于各向异性导向滤波融合算法可解决原始导向滤波存在的细节"光晕"问题,有效抑制融合结果中伪影的产生,同时具有尺度感知特性,能更好保留源图像的边缘细节信息和背景信息,提高了融合结果的准确性。  相似文献   

3.
龚奇源  杨明  罗军舟 《软件学报》2013,24(12):2883-2896
在数据发布过程中,为了防止隐私泄露,需要对数据的准标识符属性进行匿名化,以降低链接攻击风险,实现对数据所有者敏感属性的匿名保护.现有数据匿名方法都建立在数据无缺失的假设基础上,在数据存在缺失的情况下会直接丢弃相关的记录,造成了匿名化前后数据特性不一致.针对缺失数据匿名方法进行研究,基于k-匿名模型提出面向缺失数据的数据匿名方法KAIM(k-anonymity for incomplete mircrodata),在保留包含缺失记录的前提下,使在同一属性上缺失的记录尽量被分配到同一分组参与泛化.该方法将分组泛化前后的信息熵变化作为距离,基于改进的k-member 算法对数据进行聚类分组,最后通过基于泛化层次的局部泛化算法对组内数据进行泛化.实际数据集的大量实验结果表明,KAIM 造成信息缺损仅为现有算法的43.8%,可以最大程度地保障匿名化前后数据特性不变.  相似文献   

4.
李国瑞 《软件学报》2014,25(S1):139-148
针对分簇结构或多Sink节点的无线传感器网络应用场景,提出了一种基于Top-|K|查询的分布式数据重构方法.该方法包括分布式迭代硬阈值算法和基于双阈值的分布式Top-|K|查询算法两个部分.其中,管理节点和成员节点同时运行分布式迭代硬阈值算法,以分布式方式实现迭代硬阈值计算.同时,管理节点和成员节点运行基于双阈值的分布式Top-|K|查询算法,以分布式方式实现前一算法中查询绝对值最大的前K项元素和操作.实验结果表明,该方法的数据重构性能与现有方法无明显差异,同时能够有效地减少管理节点和成员节点之间的交互次数,并且降低网络中传输的数据量.  相似文献   

5.
《Information Fusion》2007,8(2):168-176
Signal-level image fusion has been the focus of considerable research attention in recent years with a plethora of algorithms proposed, using a host of image processing and information fusion techniques. Yet what is an optimal information fusion strategy or spectral decomposition that should precede it for any multi-sensor data cannot be defined a priori. This could be learned by either evaluating fusion algorithms subjectively or indeed through a small number of available objective metrics on a large set of relevant sample data. This is not practical however and is limited in that it provides no guarantee of optimal performance should realistic input conditions be different from the sample data. This paper proposes and examines the viability of a powerful framework for objectively adaptive image fusion that explicitly optimises fusion performance for a broad range of input conditions. The idea is to employ the concepts used in objective image fusion evaluation to optimally adapt the fusion process to the input conditions. Specific focus is on fusion for display, which has broad appeal in a wide range of fusion applications such as night vision, avionics and medical imaging. By integrating objective fusion metrics shown to be subjectively relevant into conventional fusion algorithms the framework is used to adapt fusion parameters to achieve optimal fusion display. The results show that the proposed framework achieves a considerable improvement in both level and robustness of fusion performance on a wide array of multi-sensor images and image sequences.  相似文献   

6.
A new algorithm for clipping a line segment against a pyramid in E 3 is presented. This algorithm avoids computation of intersection points that are not end points of the output line segment. It also solves all cases more effectively. The performance of this algorithm is shown to be consistently better than that of existing algorithms, including the Cohen–Sutherland, Liang–Barsky, and Cyrus–Beck algorithms.  相似文献   

7.
A two-leveled symbiotic evolutionary algorithm for clustering problems   总被引:3,自引:3,他引:0  
Because of its unsupervised nature, clustering is one of the most challenging problems, considered as a NP-hard grouping problem. Recently, several evolutionary algorithms (EAs) for clustering problems have been presented because of their efficiency for solving the NP-hard problems with high degree of complexity. Most previous EA-based algorithms, however, have dealt with the clustering problems given the number of clusters (K) in advance. Although some researchers have suggested the EA-based algorithms for unknown K clustering, they still have some drawbacks to search efficiently due to their huge search space. This paper proposes the two-leveled symbiotic evolutionary clustering algorithm (TSECA), which is a variant of coevolutionary algorithm for unknown K clustering problems. The clustering problems considered in this paper can be divided into two sub-problems: finding the number of clusters and grouping the data into these clusters. The two-leveled framework of TSECA and genetic elements suitable for each sub-problem are proposed. In addition, a neighborhood-based evolutionary strategy is employed to maintain the population diversity. The performance of the proposed algorithm is compared with some popular evolutionary algorithms using the real-life and simulated synthetic data sets. Experimental results show that TSECA produces more compact clusters as well as the accurate number of clusters.  相似文献   

8.
Two contention-based algorithms are proposed in this paper for establishing ad hoc Wireless Local Area Networks (WLANs). They are named uniform and geometric, respectively, based on the nature of the probabilistic model in the decision making process used in each algorithm. The main performance consideration in this paper is the network setup time each algorithm requires. It is shown that the network setup time is an explicit function of the total solicitation rounds required. The paper is, therefore, focused on deriving the distribution of the total solicitation rounds needed for setting up a network. It is shown analytically that the performance of uniform is better than that of geometric. It also derives the asymptotic lower and upper bounds for the average setup times for uniform.  相似文献   

9.
The block-cyclic data distribution is commonly used to organize array elements over the processors of a coarse-grained distributed memory parallel computer. In many scientific applications, the data layout must be reorganized at run-time in order to enhance locality and reduce remote memory access overheads. In this paper we present a general framework for developing array redistribution algorithms. Using this framework, we have developed efficient algorithms that redistribute an array from one block-cyclic layout to another. Block-cyclic redistribution consists of index set computation , wherein the destination locations for individual data blocks are calculated, and data communication , wherein these blocks are exchanged between processors. The framework treats both these operations in a uniform and integrated way. We have developed efficient and distributed algorithms for index set computation that do not require any interprocessor communication. To perform data communication in a conflict-free manner, we have developed direct indirect and hybrid algorithms. In the direct algorithm, a data block is transferred directly to its destination processor. In an indirect algorithm, data blocks are moved from source to destination processors through intermediate relay processors. The hybrid algorithm is a combination of the direct and indirect algorithms. Our framework is based on a generalized circulant matrix formalism of the redistribution problem and a general purpose distributed memory model of the parallel machine. Our algorithms sustain excellent performance over a wide range of problem and machine parameters. We have implemented our algorithms using MPI, to allow for easy portability across different HPC platforms. Experimental results on the IBM SP-2 and the Cray T3D show superior performance over previous approaches. When the block size of the cyclic data layout changes by a factor of K , the redistribution can be performed in O( log K) communication steps. This is true even when K is a prime number. In contrast, previous approaches take O(K) communication steps for redistribution. Our framework can be used for developing scalable redistribution libraries, for efficiently implementing parallelizing compiler directives, and for developing parallel algorithms for various applications. Redistribution algorithms are especially useful in signal processing applications, where the data access patterns change significantly between computational phases. They are also necessary in linear algebra programs, to perform matrix transpose operations. Received June 1, 1997; revised March 10, 1998.  相似文献   

10.
In this paper, we propose a new parallel clustering algorithm, named Parallel Bisecting k-means with Prediction (PBKP), for message-passing multiprocessor systems. Bisecting k-means tends to produce clusters of similar sizes, and according to our experiments, it produces clusters with smaller entropy (i.e., purer clusters) than k-means does. Our PBKP algorithm fully exploits the data-parallelism of the bisecting k-means algorithm, and adopts a prediction step to balance the workloads of multiple processors to achieve a high speedup. We implemented PBKP on a cluster of Linux workstations and analyzed its performance. Our experimental results show that the speedup of PBKP is linear with the number of processors and the number of data points. Moreover, PBKP scales up better than the parallel k-means with respect to the dimension and the desired number of clusters. This research was supported in part by AFRL/Wright Brothers Institute (WBI).  相似文献   

11.
带视觉系统的水下机器人作业离不开对水下目标准确的分割, 但水下环境复杂, 场景感知精度和识别精度不高等问题会严重影响目标分割算法的性能. 针对此问题本文提出了一种综合YOLOv5和FCN-DenseNet的多目标分割算法. 本算法以FCN-DenseNet算法为主要分割框架, YOLOv5算法为目标检测框架. 采用YOLOv5算法检测出每个种类目标所在位置; 然后输入针对不同类别的FCN-DenseNet语义分割网络, 实现多分支单目标语义分割, 最后融合分割结果实现多目标语义分割. 此外, 本文在Kaggle竞赛平台上的海底图片数据集上将所提算法与PSPNet算法和FCN-DenseNet算法两种经典的语义分割算法进行了实验对比. 结果表明本文所提的多目标图像语义分割算法与PSPNet算法相比, 在MIoUIoU指标上分别提高了14.9%和11.6%; 与FCN-DenseNet算法在MIoUIoU指标上分别提高了8%和7.7%, 更适合于水下图像分割.  相似文献   

12.
This paper addresses the problem of scheduling packet transmissions in wavelength-division multiplexed networks with tunable transmitters and fixed-tuned receivers. Unlike previous work which assume that all packets are known in advance, this paper considers theon-linecase in which packets may arrive at any time. An on-line algorithm is presented that achieves a performance ratio of 3 with respect to an optimal off-line algorithm. In addition, off-line algorithms are presented for the case when there are two wavelength channels. Even this special case of the problem is known to be NP-complete and the currently best known algorithm for this case achieves a performance ratio of 2. Using a more rigorous analysis, it is shown that this algorithm has, in fact, a performance ratio of , and an example is presented where this algorithm achieves this performance ratio even when the tuning delay is zero. Furthermore, for this case a new polynomial-time approximation algorithm is presented with a performance ratio better than , provided the tuning delayδis less than ( − )(S/6), whereSis the total number of packets to be transmitted.  相似文献   

13.
Clustering is a popular data analysis and data mining technique. A popular technique for clustering is based on k-means such that the data is partitioned into K clusters. However, the k-means algorithm highly depends on the initial state and converges to local optimum solution. This paper presents a new hybrid evolutionary algorithm to solve nonlinear partitional clustering problem. The proposed hybrid evolutionary algorithm is the combination of FAPSO (fuzzy adaptive particle swarm optimization), ACO (ant colony optimization) and k-means algorithms, called FAPSO-ACO–K, which can find better cluster partition. The performance of the proposed algorithm is evaluated through several benchmark data sets. The simulation results show that the performance of the proposed algorithm is better than other algorithms such as PSO, ACO, simulated annealing (SA), combination of PSO and SA (PSO–SA), combination of ACO and SA (ACO–SA), combination of PSO and ACO (PSO–ACO), genetic algorithm (GA), Tabu search (TS), honey bee mating optimization (HBMO) and k-means for partitional clustering problem.  相似文献   

14.
多传感器信息融合技术在目标跟踪领域已经得到了广泛的应用,末制导融合技术是多传感器跟踪系统中的关键技术之一,而主动雷达、红外传感器的数据融合问题是研究的热点。由于主动雷达发射电磁波容易暴露,红外传感器隐蔽性好,但只能测角,不能测距,采用主动雷达为主、红外探测为辅的数据融合系统进行目标跟踪有利于充分地发挥红外、雷达2种传感器的互补性,使其相得益彰。基于卡尔曼滤波的预测、修正的思想,提出了一种新的融合算法,仿真结果和实验表明:利用此方法可使雷达、红外传感器达到较好的数据融合效果。  相似文献   

15.
Nowadays, large scale optimisation problems arise as a very interesting field of research, because they appear in many real-world problems (bio-computing, data mining, etc.). Thus, scalability becomes an essential requirement for modern optimisation algorithms. In a previous work, we presented memetic algorithms based on local search chains. Local search chain concerns the idea that, at one stage, the local search operator may continue the operation of a previous invocation, starting from the final configuration reached by this one. Using this technique, it was presented a memetic algorithm, MA-CMA-Chains, using the CMA-ES algorithm as its local search component. This proposal obtained very good results for continuous optimisation problems, in particular with medium-size (with up to dimension 50). Unfortunately, CMA-ES scalability is restricted by several costly operations, thus MA-CMA-Chains could not be successfully applied to large scale problems. In this article we study the scalability of memetic algorithms based on local search chains, creating memetic algorithms with different local search methods and comparing them, considering both the error values and the processing cost. We also propose a variation of Solis Wets method, that we call Subgrouping Solis Wets algorithm. This local search method explores, at each step of the algorithm, only a random subset of the variables. This subset changes after a certain number of evaluations. Finally, we propose a new memetic algorithm based on local search chains for high dimensionality, MA-SSW-Chains, using the Subgrouping Solis Wets’ algorithm as its local search method. This algorithm is compared with MA-CMA-Chains and different reference algorithms, and it is shown that the proposal is fairly scalable and it is statistically very competitive for high-dimensional problems.  相似文献   

16.
This paper presents a time-constrained algorithm and a resource-constrained algorithm to minimize the power consumption with resources operating at multiple voltages. The input to both schemes is an unscheduled data flow graph (DFG), and the timing or the resource constraints. In the paper, partitioning is considered with scheduling in the proposed algorithms as multiple voltage design can lead to an increase in interconnection complexity at layout level. That is, in the proposed algorithms power consumption is first reduced by the scheduling step, and then the partitioning step takes over to decrease the interconnection complexity. Both time-constrained and resource-constrained algorithms have time complexity of o(n2), where n is the number of nodes in the DFG. Experiments with a number of DSP benchmarks show that the proposed algorithms achieve the power reduction under timing constraints and resource constraints by an average of 46.5 and 20%, respectively.  相似文献   

17.
Blum  Chawla  Kalai 《Algorithmica》2008,36(3):249-260
Abstract. Adaptive data structures form a central topic of on-line algorithms research. The area of Competitive Analysis began with the results of Sleator and Tarjan showing that splay trees achieve static optimality for search trees, and that Move-to-Front is constant competitive for the list update problem [ST1], [ST2]. In a parallel development, powerful algorithms have been developed in Machine Learning for problems of on-line prediction [LW], [FS]. This paper is inspired by the observation made in [BB] that if computational decision-making costs are not considered, then these ``weighted experts' techniques from Machine Learning allow one to achieve a 1+ε ratio against the best static object in hindsight for a wide range of data structure problems. In this paper we give two results. First, we show that for the case of lists , we can achieve a 1+ε ratio with respect to the best static list in hindsight, by a simple efficient algorithm. This algorithm can then be combined with existing results to achieve good static and dynamic bounds simultaneously. Second, for trees, we show a (computationally in efficient) algorithm that achieves what we call ``dynamic search optimality': dynamic optimality if we allow the on-line algorithm to make free rotations after each request. We hope this to be a step towards solving the longstanding open problem of achieving true dynamic optimality for trees.  相似文献   

18.
Fast and exact out-of-core and distributed k-means clustering   总被引:1,自引:2,他引:1  
Clustering has been one of the most widely studied topics in data mining and k-means clustering has been one of the popular clustering algorithms. K-means requires several passes on the entire dataset, which can make it very expensive for large disk-resident datasets. In view of this, a lot of work has been done on various approximate versions of k-means, which require only one or a small number of passes on the entire dataset.In this paper, we present a new algorithm, called fast and exact k-means clustering (FEKM), which typically requires only one or a small number of passes on the entire dataset and provably produces the same cluster centres as reported by the original k-means algorithm. The algorithm uses sampling to create initial cluster centres and then takes one or more passes over the entire dataset to adjust these cluster centres. We provide theoretical analysis to show that the cluster centres thus reported are the same as the ones computed by the original k-means algorithm. Experimental results from a number of real and synthetic datasets show speedup between a factor of 2 and 4.5, as compared with k-means.This paper also describes and evaluates a distributed version of FEKM, which we refer to as DFEKM. This algorithm is suitable for analysing data that is distributed across loosely coupled machines. Unlike the previous work in this area, DFEKM provably produces the same results as the original k-means algorithm. Our experimental results show that DFEKM is clearly better than two other possible options for exact clustering on distributed data, which are down loading all data and running sequential k-means or running parallel k-means on a loosely coupled configuration. Moreover, even in a tightly coupled environment, DFEKM can outperform parallel k-means if there is a significant load imbalance. Ruoming Jin is currently an assistant professor in the Computer Science Department at Kent State University. He received a BE and a ME degree in computer engineering from Beihang University (BUAA), China in 1996 and 1999, respectively. He earned his MS degree in computer science from University of Delaware in 2001, and his Ph.D. degree in computer science from the Ohio State University in 2005. His research interests include data mining, databases, processing of streaming data, bioinformatics, and high performance computing. He has published more than 30 papers in these areas. He is a member of ACM and SIGKDD. Anjan Goswami studied robotics at the Indian Institute of Technology at Kanpur. While working with IBM, he was interested in studying computer science. He then obtained a masters degree from the University of South Florida, where he worked on computer vision problems. He then transferred to the PhD program in computer science at OSU, where he did a Masters thesis on efficient clustering algorithms for massive, distributed and streaming data. On successful completion of this, he decided to join a web-service-provider company to do research in designing and developing high-performance search solutions for very large structured data. Anjan' favourite recreations are studying and predicting technology trends, nature photography, hiking, literature and soccer. Gagan Agrawal is an Associate Professor of Computer Science and Engineering at the Ohio State University. He received his B.Tech degree from Indian Institute of Technology, Kanpur, in 1991, and M.S. and Ph.D degrees from University of Maryland, College Park, in 1994 and 1996, respectively. His research interests include parallel and distributed computing, compilers, data mining, grid computing, and data integration. He has published more than 110 refereed papers in these areas. He is a member of ACM and IEEE Computer Society. He received a National Science Foundation CAREER award in 1998.  相似文献   

19.
Learning automata based dynamic guard channel algorithms   总被引:2,自引:0,他引:2  
In this paper, we first propose two learning automata based decentralized dynamic guard channel algorithms for cellular mobile networks. These algorithms use learning automata to adjust the number of guard channels to be assigned to cells of network. Then, we introduce a new model for nonstationary environments under which the proposed algorithms work and study their steady state behavior when they use LR-I learning algorithm. It is also shown that a learning automaton operating under the proposed nonstationary environment equalizes its penalty strengths. Computer simulations have been conducted to show the effectiveness of the proposed algorithms. The simulation results show that the performances of the proposed algorithms are close to the performance of guard channel algorithm that knows all the traffic parameters.  相似文献   

20.
Abstract. We investigate a variant of on-line edge-coloring in which there is a fixed number of colors available and the aim is to color as many edges as possible. We prove upper and lower bounds on the performance of different classes of algorithms for the problem. Moreover, we determine the performance of two specific algorithms, First-Fit and Next-Fit . Specifically, algorithms that never reject edges that they are able to color are called fair algorithms. We consider the four combinations of fair/ not fair and deterministic/ randomized. We show that the competitive ratio of deterministic fair algorithms can vary only between approximately 0.4641 and 1/2, and that Next-Fit is worst possible among fair algorithms. Moreover, we show that no algorithm is better than 4/7-competitive. If the graphs are all k -colorable, any fair algorithm is at least 1/2-competitive. Again, this performance is matched by Next-Fit while the competitive ratio for First-Fit is shown to be k/(2k-1) , which is significantly better, as long as k is not too large.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号