首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
The treatment of constraints is considered here within the framework ofenergy-momentum conserving formulations for flexible multibody systems.Constraint equations of various types are an inherent component of multibodysystems, their treatment being one of the key performance features ofmathematical formulations and numerical solution schemes.Here we employ rotation-free inertial Cartesian coordinates of points tocharacterise such systems, producing a formulation which easily couples rigidbody dynamics with nonlinear finite element techniques for the flexiblebodies. This gives rise to additional internal constraints in rigid bodies topreserve distances. Constraints are enforced via a penalty method, which givesrise to a simple yet powerful formulation. Energy-momentum time integrationschemes enable robust long term simulations for highly nonlinear dynamicproblems.The main contribution of this paper focuses on the integration of constraintequations within energy-momentum conserving numerical schemes. It is shownthat the solution for constraints which may be expressed directly in terms ofquadratic invariants is fairly straightforward. Higher-order constraints mayalso be solved, however in this case for exact conservation an iterativeprocedure is needed in the integration scheme. This approach, together withsome simplified alternatives, is discussed.Representative numerical simulations are presented, comparing the performanceof various integration procedures in long-term simulations of practicalmultibody systems.  相似文献   

2.
首先回顾多体系统动力学的学科发展和学术交流情况,然后系统概述了多柔体系统动力学方程数值算法、多柔体系统接触/碰撞动力学与柔性空间结构展开动力学三个方面的研究进展及值得关注的若干问题,最后给出了开展多柔体系统动力学研究的若干建议.  相似文献   

3.
Complex Flexible Multibody Systems with Application to Vehicle Dynamics   总被引:5,自引:0,他引:5  
A formulation to describe the linear elastodynamics offlexible multibody systems is presented in this paper. By using a lumpedmass formulation the flexible body mass is represented by a collectionof point masses with rotational inertia. Furthermore, the bodydeformations are described with respect to a body-fixed coordinateframe. The coupling between the flexible body deformation and its rigidbody motion is completely preserved independently of the methods used todescribe the body flexibility. In particular, if the finite elementmethod is chosen for this purpose only the standard finite elementparameters obtained from any commercial finite element code are used inthe methodology. In this manner, not only the analyst can use any typeof finite elements in the multibody model but the same finite elementmodel can be used to evaluate the structural integrity of any systemcomponent also. To deal with complex-shaped structural models offlexible bodies it is necessary to reduce the number of generalizedcoordinates to a reasonable dimension. This is achieved with thecomponent mode synthesis at the cost of specializing the formulation toflexible multibody models experiencing linear elastic deformations only.Structural damping is introduced to achieve better numerical performancewithout compromising the quality of the results. The motions of therigid body and flexible body reference frames are described usingCartesian coordinates. The kinematic constraints between the differentsystem components are evaluated in terms of this set of generalizedcoordinates. The equations of motion of the flexible multibody systemare solved by using the augmented Lagrangean method and a sparse matrixsolver. Finally, the methodology is applied to model a vehicle with acomplex flexible chassis, simulated in typical handling scenarios. Theresults of the simulations are discussed in terms of their numericalprecision and efficiency.  相似文献   

4.
In the paper a numerical approach for deriving the nonlinear explicitform dynamic equations of rigid and flexible multibody systems ispresented. The dynamic equations are obtained as Ordinary DifferentialEquations for generalized coordinates and without algebraic constraints.The Finite Element Theory is applied for discretization of flexiblebodies. The minimal set of the generalized coordinates includesindependent joint motions, as well as independent small flexibledeflections of finite element nodes. The node deflections and stiffnessmatrices are calculated with respect to the moving relative coordinatesystems of the flexible bodies. The positions and orientations ofelement and substructure coordinate systems are updated according to thenode deflections. A major step of the numerical process is the kinematicanalysis and calculation of matrices of partial derivatives of thequasi-coordinates (dependent joint motions and coordinates of points andnodes) with respect to the generalized coordinates. The inertia terms inthe dynamic equations are obtained multiplying the matrices of thepartial derivatives by the mass matrices of the rigid and flexiblebodies. Stiffness properties of flexible bodies are presented in thedynamic equations by stiff forces that depend on the generalizedrelative flexible deflections only. Several examples of large motion ofbeam structures show the effectiveness of the algorithm.  相似文献   

5.
Multibody Dynamics of Very Flexible Damped Systems   总被引:2,自引:0,他引:2  
An efficient multibody dynamics formulation is presented for simulating the forward dynamics of open and closed loop mechanical systems comprised of rigid and flexible bodies interconnected by revolute, prismatic, free, and fixed joints. Geometrically nonlinear deformation of flexible bodies is included and the formulation does not impose restrictions on the representation of material damping within flexible bodies.The approach is based on Kane's equation without multipliers and the resulting formulation generates 2ndof+m first order ordinary differential equations directly where ndof is the smallest number of system degrees of freedom that can completely describe the system configuration and m is the number of loop closure velocity constraint equations. The equations are integrated numerically in the time domain to propagate the solution.Flexible bodies are discretized using a finite element approach. The mass and stiffness matrices for a six-degree-of-freedom planar beam element are developed including mass coupling terms, rotary inertia, centripetal and Coriolis forces, and geometric stiffening terms.The formulation is implemented in the general purpose multibody dynamics computer program flxdyn. Extensive validation of the formulation and corresponding computer program is accomplished by comparing results with analytically derived equations, alternative approximate solutions, and benchmark problems selected from the literature. The formulation is found to perform well in terms of accuracy and solution efficiency.This article develops the formulation and presents a set of validation problems including a sliding pendulum, seven link mechanism, flexible beam spin-up problem, and flexible slider crank mechanism.  相似文献   

6.
Efficient, precise dynamic analysis for general flexible multibody systems has become a research focus in the field of flexible multibody dynamics. In this paper, the finite element method and component mode synthesis are introduced to describe the deformations of the flexible components, and the dynamic equations of flexible bodies moving in plane are deduced. By combining the discrete time transfer matrix method of multibody system with these dynamic equations of flexible component, the transfer equations and transfer matrices of flexible bodies moving in plane are developed. Finally, a high-efficient dynamic modeling method and its algorithm are presented for high-speed computation of general flexible multibody dynamics. Compared with the ordinary dynamics methods, the proposed method combines the strengths of the transfer matrix method and finite element method. It does not need the global dynamic equations of system and has the low order of system matrix and high computational efficiency. This method can be applied to solve the dynamics problems of flexible multibody systems containing irregularly shaped flexible components. It has advantages for dynamic design of complex flexible multibody systems. Formulations as well as a numerical example of a multi-rigid-flexible-body system containing irregularly shaped flexible components are given to validate the method.  相似文献   

7.
Efficient, precise dynamic analysis for general flexible multibody systems has become a research focus in the field of flexible multibody dynamics. In this paper, the finite element method and component mode synthesis are introduced to describe the deformations of the flexible components, and the dynamic equations of flexible bodies moving in plane are deduced. By combining the discrete time transfer matrix method of multibody system with these dynamic equations of flexible component, the transfer equations and transfer matrices of flexible bodies moving in plane are developed. Finally, a high-efficient dynamic modeling method and its algorithm are presented for high-speed computation of general flexible multibody dynamics. Compared with the ordinary dynamics methods, the proposed method combines the strengths of the transfer matrix method and finite element method. It does not need the global dynamic equations of system and has the low order of system matrix and high computational efficiency. This method can be applied to solve the dynamics problems of flexible multibody systems containing irregularly shaped flexible components. It has advantages for dynamic design of complex flexible multibody systems. Formulations as well as a numerical example of a multi-rigid-flexible-body system containing irregularly shaped flexible components are given to validate the method.  相似文献   

8.
The use of a multibody methodology to describe the large motion of complex systems that experience structural deformations enables to represent the complete system motion, the relative kinematics between the components involved, the deformation of the structural members and the inertia coupling between the large rigid body motion and the system elastodynamics. In this work, the flexible multibody dynamics formulations of complex models are extended to include elastic components made of composite materials, which may be laminated and anisotropic. The deformation of any structural member must be elastic and linear, when described in a coordinate frame fixed to one or more material points of its domain, regardless of the complexity of its geometry. To achieve the proposed flexible multibody formulation, a finite element model for each flexible body is used. For the beam composite material elements, the sections properties are found using an asymptotic procedure that involves a two-dimensional finite element analysis of their cross-section. The equations of motion of the flexible multibody system are solved using an augmented Lagrangian formulation and the accelerations and velocities are integrated in time using a multi-step multi-order integration algorithm based on the Gear method.  相似文献   

9.
This paper deals with the efficient extension of the recursive formalism (articulated body inertia) for flexible multibody systems. Present recursive formalisms for flexible multibody systems require the inversion of the mass matrix with the dimension equal to the number of flexible degrees of freedom of particular bodies. This is completely removed. The paper describes the derivation of equations of motion expressed in the local coordinate system attached to the body, then the discretization of these equations of motion based on component mode synthesis and FEM shape functions and, finally, two versions of the new recursive formalism.  相似文献   

10.
Multibody System Dynamics: Roots and Perspectives   总被引:10,自引:0,他引:10  
The paper reviews the roots, the state-of-the-art and perspectives of multibody system dynamics. Some historical remarks show that multibody system dynamics is based on classical mechanics and its engineering applications ranging from mechanisms, gyroscopes, satellites and robots to biomechanics. The state-of-the-art in rigid multibody systems is presented with reference to textbooks and proceedings. Multibody system dynamics is characterized by algorithms or formalisms, respectively, ready for computer implementation. As a result simulation and animation are most important. The state-of-the-art in flexible multibody systems is considered in a companion review by Shabana.Future research fields in multibody dynamics are identified as standardization of data, coupling with CAD systems, parameter identification, real-time animation, contact and impact problems, extension to control and mechatronic systems, optimal system design, strength analysis and interaction with fluids. Further, there is a strong interest on multibody systems in analytical and numerical mathematics resulting in reduction methods for rigorous treatment of simple models and special integration codes for ODE and DAE representations supporting the numerical efficiency. New software engineering tools with modular approaches promise improved efficiency still required for the more demanding needs in biomechanics, robotics and vehicle dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号