首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents an optimization algorithm for simultaneous improvement of power quality (PQ), optimal placement and sizing of fixed capacitor banks in radial distribution networks in the presence of voltage and current harmonics. The algorithm is based on particle swarm optimization (PSO). The objective function includes the cost of power losses, energy losses and those of the capacitor banks. Constraints include voltage limits, number/size of installed capacitors at each bus, and PQ limits of standard IEEE-519. Using a newly proposed fitness function, a suitable combination of the objective function and relevant constraints is defined as a criterion to select a set of the most suitable buses for capacitor placement. This method is also capable of improving particles in several steps for both converging more readily to the near global solution as well as improving satisfaction of the power quality constraints. Simulation results for the 18-bus and 33-bus IEEE distorted networks using the proposed method are presented and compared with those of previous works. In the 18-bus IEEE distorted network, this indicated an improvement of 3.29% saving compared with other methods. Using the proposed optimization method and simulation performed on the 33-bus IEEE distorted network an annual cost reduction of 31.16% was obtained.  相似文献   

2.
In this paper, a newly surfaced nature-inspired optimization technique called moth-flame optimization (MFO) algorithm is utilized to address the optimal reactive power dispatch (ORPD) problem. MFO algorithm is inspired by the natural navigation technique of moths when they travel at night, where they use visible light sources as guidance. In this paper, MFO is realized in ORPD problem to investigate the best combination of control variables including generators voltage, transformers tap setting as well as reactive compensators sizing to achieve minimum total power loss and minimum voltage deviation. Furthermore, the effectiveness of MFO algorithm is compared with other identified optimization techniques on three case studies, namely IEEE 30-bus system, IEEE 57-bus system and IEEE 118-bus system. The statistical analysis of this research illustrated that MFO is able to produce competitive results by yielding lower power loss and lower voltage deviation than the selected techniques from literature.  相似文献   

3.
This paper presents an improved solution for optimal placement and sizing of active power conditioner (APC) to enhance power quality in distribution systems using the improved discrete firefly algorithm (IDFA). A multi-objective optimization problem is formulated to improve voltage profile, minimize voltage total harmonic distortion and minimize total investment cost. The performance of the proposed algorithm is validated on the IEEE 16- and 69-bus test systems using the Matlab software. The obtained results are compared with the conventional discrete firefly algorithm, genetic algorithm and discrete particle swarm optimization. The comparison of results showed that the proposed IDFA is the most effective method among others in determining optimum location and size of APC in distribution systems.  相似文献   

4.
This article presents the significance of efficient hybrid heuristic search algorithm(HS-PABC) based on Harmony search algorithm (HSA) and particle artificial bee colony algorithm (PABC) in the context of performance enhancement of distribution network through simultaneous network reconfiguration along with optimal allocation and sizing of distributed generators and shunt capacitors. The premature and slow convergence over multi model fitness landscape is the main limitation in standard HSA. In the proposed hybrid algorithm the harmony memory vector of HSA is intelligently enhanced through PABC algorithm during the optimization process to reach the optimal solution within the search space. In hybrid approach, the exploration ability of HSA and the exploitation ability of PABC algorithm are integrated to blend the potency of both algorithms. The box plot and Wilcoxon rank sum tests are used to show the quality of the solution obtained by hybrid HS-PABC with respect to HSA.The computational results prove the integrated approach of the network reconfiguration problem along with optimal placement and sizing of DG units and shunt capacitors as an efficient approach with respect to power loss reduction and voltage profile enhancement. The results obtained on 69 and 118 node network by hybrid HS-PABC method and the standard HSA reveals the effeciency of the proposed approach which guarantees to achieve global optimal solution with less iteration.  相似文献   

5.
This paper describes the improved harmony search method (IHS) to solve optimal power flow (OPF) problems. The harmony search is one of meta-heuristic search methods inspired by the improvisation of musicians developed by Geem (2001) [23]. The proposed algorithm was tested with five standard IEEE test systems (6-bus, 14-bus, 30-bus, 57-bus and 118-bus test systems). The tests were divided into smooth and non-smooth fuel-cost cases. The comparisons among solutions obtained by sequential quadratic programming (SQP), genetic algorithms (GA) and IHS were conducted. As revealed from the simulated results, the effectiveness of the IHS for solving OPF problems was confirmed.  相似文献   

6.
This paper presents bacterial foraging optimization (BFO) algorithm and its adaptive version to optimize the planning of passive harmonic filters (PHFs).The important problem of using PHFs is determining location, size and harmonic tuning orders of them, which is reach standard levels of harmonic distortion with applying minimum cost of passive filters.In this study to optimize the PHFs location, size and setting the harmonic tuning orders in the distribution system, considered objective function includes the reduction of power loss and investment cost of PHFs. At the same time, constraints include voltage limits, number/size of installed PHFs, limit candidate buses for PHFs installation and the voltage total harmonic distortion (THDv) in all buses. The harmonic levels of system are obtained by current injections method and the load flow is solved by the iterative method of power sum, which is suitable for the accuracy requirements of this type of study. It is shown that through an economical placement and sizing of PHFs the total voltage harmonic distortion and active power loss could be minimized simultaneously.The considered objective function is of highly non-convex manner, and also has several constraints. On the other hand due to significant computational time reduction and faster convergence of BFO in comparison with other intelligent optimization approach such as genetic algorithm (GA), particle swarm optimization (PSO) and artificial bee colony (ABC) the simple version of BFO has been implemented. Of course other versions of BFO such as Adaptive BFO and combination of BFO with other method due to complexity of harmonic optimization problem have not considered in this research.The simulation results for small scale test system with 10 buses, showed the significant computational time reduction and faster convergence of BFO in comparison with GA, PSO and ABC. Therefore in large scale radial system with 34 buses, the proposed method is solved using BFO.The simulation results for a 10-bus system as a small scale and 34-bus radial system as a large scale show that the proposed method is efficient for solving the presented problem.  相似文献   

7.
This paper presents an evolving ant direction particle swarm optimization algorithm for solving the optimal power flow problem with non-smooth and non-convex generator cost characteristics. In this method, ant colony search is used to find a suitable velocity updating operator for particle swarm optimization and the ant colony parameters are evolved using genetic algorithm approach. To update the velocities for particle swarm optimization, five velocity updating operators are used in this method. The power flow problem is solved by the Newton–Raphson method. The feasibility of the proposed method was tested on IEEE 30-bus, IEEE 39-bus and IEEE-57 bus systems with three different objective functions. Several cases were investigated to test and validate the effectiveness of the proposed method in finding the optimal solution. Simulation results prove that the proposed method provides better results compared to classical particle swarm optimization and other methods recently reported in the literature. An innovative statistical analysis based on central tendency measures and dispersion measures was carried out on the bus voltage profiles and voltage stability indices.  相似文献   

8.
Distributed generator (DG) is recognized as a viable solution for controlling line losses, bus voltage, voltage stability, etc. and represents a new era for distribution systems. This paper focuses on developing an approach for placement of DG in order to minimize the active power loss and energy loss of distribution lines while maintaining bus voltage and voltage stability index within specified limits of a given power system. The optimization is carried out on the basis of optimal location and optimal size of DG. This paper developed a new, efficient and novel krill herd algorithm (KHA) method for solving the optimal DG allocation problem of distribution networks. To test the feasibility and effectiveness, the proposed KH algorithm is tested on standard 33-bus, 69-bus and 118-bus radial distribution networks. The simulation results indicate that installing DG in the optimal location can significantly reduce the power loss of distributed power system. Moreover, the numerical results, compared with other stochastic search algorithms like genetic algorithm (GA), particle swarm optimization (PSO), combined GA and PSO (GA/PSO) and loss sensitivity factor simulated annealing (LSFSA), show that KHA could find better quality solutions.  相似文献   

9.
Both active and reactive power play important roles in power system transmission and distribution networks. While active power does the useful work, reactive power supports the voltage that necessitates control from system reliability aspect as deviation of voltage from nominal range may lead to inadvertent operation and premature failure of system components. Reactive power flow must also be controlled in the system to maximize the amount of real power that can be transferred across the power transmitting media. This paper proposes an approach to simultaneously minimize the real power loss and the net reactive power flow in the system when reinforced with distributed generators (DGs) and shunt capacitors (SCs). With the suggested method, the system performance, reliability and loading capacity can be increased by reduction of losses. A multiobjective evolutionary algorithm based on decomposition (MOEA/D) is adopted to select optimal sizes and locations of DGs and SCs in large scale distribution networks with objectives being minimizing system real and reactive power losses. MOEA/D is the process of decomposition of a multiobjective optimization problem into a number of scalar optimization subproblems and optimizing those concurrently. Case studies with standard IEEE 33-bus, 69-bus, 119-bus distribution networks and a practical 83-bus distribution network are performed. Output results of MOEA/D method are compared with similar past studies and notable improvement is observed.  相似文献   

10.
In this paper a new scenario-based framework is presented for transmission expansion planning (TEP) under normal and N–1 conditions. The proposed framework takes into account cost of network losses, cost of the transmission circuits and substations in the optimization process as objective functions, while considers short-term and also long-term constraints under normal and N–1 conditions as problem constraints. The proposed model is a non-convex optimization problem having a non-linear mixed-integer nature. A new improved harmony search algorithm (IHSA) is used in order to obtain the final optimal solution. The IHSA is a recently developed optimization algorithm which imitates the music improvisation process. In this process, the harmonists improvise their instrument pitches searching for the perfect state of harmony. The newly planning methodology has been demonstrated on the well-known Garver’s 6-bus test system and a real life network of south Brazilian electric power grid in order to demonstrate the feasibility and capabilities of the proposed algorithm. The detailed results of the case studies are presented and thoroughly analyzed. The obtained TEP results illustrate the sufficiency and profitableness of the newly developed method in expansion planning when compared with other methods.  相似文献   

11.
Power loss and voltage uncertainty are the major issues prevalently faced in the design of distribution systems. But such issues can be resolved through effective usage of networking reconfiguration that has a combination of Distributed Generation (DG) units from distribution networks. In this point of view, optimal placement and sizing of DGs are effective ways to boost the performance of power systems. The optimum allocation of DGs resolves various problems namely, power loss, voltage profile improvement, enhanced reliability, system stability, and performance. Several research works have been conducted to address the distribution system problems in terms of power loss, energy loss, voltage profile, and voltage stability depending upon optimal DG distribution. With this motivation, the current study designs a Chaotic Artificial Flora Optimization based on Optimal Placement and Sizing of DGs (CAFO-OPSDG) to enhance the voltage profiles and mitigate the power loss. Besides, the CAFO algorithm is derived from the incorporation of chaos theory concept into conventional artificial flora optimization AFO algorithm with an aim to enhance the global optimization abilities. The fitness function of CAFO-OPSDG algorithm involves voltage regulation, power loss minimization, and penalty cost. To consider the actual power system scenario, the penalty factor acts as an important element not only to minimize the total power loss but to increase the voltage profiles as well. The experimental validation of the CAFO-OPSDG algorithm was conducted against IEEE 33 Bus system and IEEE 69 Bus system. The outcomes were examined under various test scenarios. The results of the experiment established that the presented CAFO-OPSDG model is effective in terms of reducing the power loss and voltage deviation and boost-up the voltage profile for the specified system.  相似文献   

12.
In this paper, an effective and reliable algorithm, termed as evolving ant direction differential evolution (EADDE) algorithm, for solving the optimal power flow problem with non-smooth and non-convex generator fuel cost characteristics is presented. In this method, suitable mutation operator for differential evolution (DE) is found by ant colony search. The genetic algorithm evolves the ant colony parameters and the Newton-Raphson method solves the power flow problem. The proposed algorithm has been examined on the standard IEEE 30-bus and IEEE 57-bus systems with three different objective functions. Different cases were considered to investigate the robustness of the proposed method in finding the global solution. The EADDE provides better results compared to classical DE and other methods recently reported in the literature as demonstrated by simulation results.  相似文献   

13.
This study presents a binary particle swarm optimization (BPSO) based methodology for the optimal placement of phasor measurement units (PMUs) when using a mixed measurement set. The optimal PMU placement problem is formulated to minimize the number of PMUs installation subject to full network observability and to maximize the measurement redundancy at the power system buses. In order to ensure full network observability in an electric power network the topology-based algorithm is used and Several factors considered; such as the available data from existing conventional measurements, the number and location of zero injection buses, the number and location of installed PMUs and of course, the system topology. The efficiency of the proposed method is verified by the simulation results of IEEE 14-bus, 30-bus, 57-bus-118 bus systems, respectively. The results show that the whole system can be observable with installing PMUs on less than 25% of system buses. For verification of our proposed method, the results are compared with some newly reported methods which show the method as a novel solution to obtain redundant measurement system with the least number of phasor measurement units.  相似文献   

14.
Optimal reactive power dispatch (ORPD) is well known as a complex mixed integer nonlinear optimization problem where many constraints are required to handle. In the last decades, many artificial intelligence-based optimization methods have been used to solve ORPD problem. But, these optimization methods lack an effective means to handle constraints on state variables. Thus, in this paper, the novel and feasible conditional selection strategies (CSS) are devised to handle constraints efficiently in the proposed improved gravitational search algorithm (GSA-CSS). In addition, considering the weakness of GSA itself, the improved GSA-CSS (IGSA-CSS) is presented which employs the memory property of particle swarm optimization (PSO) to enhance global searching ability and utilizes the concept of opposition-based learning (OBL) for optimizing initial population. The presented GSA-CSS and IGSA-CSS methods are applied to ORPD problem on IEEE14-bus, IEEE30-bus and IEEE57-bus test systems for minimization of power transmission losses (Ploss) and voltage deviation (Vd), respectively. The comparisons of simulation results reveal that IGSA-CSS provides better results and the improvements of algorithm in this work are feasible and effective.  相似文献   

15.
Conventionally, optimal reactive power dispatch (ORPD) is described as the minimization of active power transmission losses and/or total voltage deviation by controlling a number of control variables while satisfying certain equality and inequality constraints. This article presents a newly developed meta-heuristic approach, chaotic krill herd algorithm (CKHA), for the solution of the ORPD problem of power system incorporating flexible AC transmission systems (FACTS) devices. The proposed CKHA is implemented and its performance is tested, successfully, on standard IEEE 30-bus test power system. The considered power system models are equipped with two types of FACTS controllers (namely, thyristor controlled series capacitor and thyristor controlled phase shifter). Simulation results indicate that the proposed approach yields superior solution over other popular methods surfaced in the recent state-of-the-art literature including chaos embedded few newly developed optimization techniques. The obtained results indicate the effectiveness for the solution of ORPD problem of power system considering FACTS devices. Finally, simulation is extended to some large-scale power system models like IEEE 57-bus and IEEE 118-bus test power systems for the same objectives to emphasis on the scalability of the proposed CKHA technique. The scalability, the robustness and the superiority of the proposed CKHA are established in this paper.  相似文献   

16.
This paper deals with the optimal placement of distributed generation (DG) units in distribution systems via an enhanced multi-objective particle swarm optimization (EMOPSO) algorithm. To pursue a better simulation of the reality and provide the designer with diverse alternative options, a multi-objective optimization model with technical and operational con- straints is constructed to minimize the total power loss and the voltage fluctuation of the power system simultaneously. To enhance the convergence of MOPSO, special techniques including a dynamic inertia weight and acceleration coefficients have been inte- grated as well as a mutation operator. Besides, to promote the diversity of Pareto-optimal solutions, an improved non-dominated crowding distance sorting technique has been introduced and applied to the selection of particles for the next iteration. After verifying its effectiveness and competitiveness with a set of well-known benchmark functions, the EMOPSO algorithm is em- ployed to achieve the optimal placement of DG units in the IEEE 33-bus system. Simulation results indicate that the EMOPSO algorithm enables the identification of a set of Pareto-optimal solutions with good tradeoff between power loss and voltage sta- bility. Compared with other representative methods, the present results reveal the advantages of optimizing capacities and loca- tions of DG units simultaneously, and exemplify the validity of the EMOPSO algorithm applied for optimally placing DG units.  相似文献   

17.
Incorporation of distributed generation (DG) in distribution network may reduce the network loss if DG of appropriate size is placed at proper strategic location. The current article presents determination of optimal size and location of DG in radial distribution network (RDN) for the reduction of network loss considering deterministic load demand and DG generation using symbiotic organisms search (SOS) algorithm. SOS algorithm is a meta-heuristic technique, inspired by the symbiotic relationship between different biological species. In this paper, optimal size and location of DG are obtained for two different RDNs (such as, 33-bus and 69-bus distribution networks). The obtained results, using the proposed SOS, are compared to the results offered by some other optimization algorithms like particle swarm optimization, teaching-learning based optimization, cuckoo search, artificial bee colony, gravitational search algorithm and stochastic fractal search. The comparison is done based on minimum loss of the distribution network as well as based on the convergence mobility of the fitness function offered by each of the comparative algorithms for both the networks under consideration. It is established that the proposed SOS algorithm offers better result as compared to other optimization algorithms under consideration. The results are also compared to the existing solution available in the literature.  相似文献   

18.
Solution of optimal power flow (OPF) problem aims to optimize a selected objective function such as fuel cost, active power loss, total voltage deviation (TVD) etc. via optimal adjustment of the power system control variables while at the same time satisfying various equality and inequality constraints. In the present work, a particle swarm optimization with an aging leader and challengers (ALC-PSO) is applied for the solution of the OPF problem of power systems. The proposed approach is examined and tested on modified IEEE 30-bus and IEEE 118-bus test power system with different objectives that reflect minimization of fuel cost or active power loss or TVD. The simulation results demonstrate the effectiveness of the proposed approach compared with other evolutionary optimization techniques surfaced in recent state-of-the-art literature. Statistical analysis, presented in this paper, indicates the robustness of the proposed ALC-PSO algorithm.  相似文献   

19.
针对分布式电源配置对配电网的影响,提出一种带二阶项配网潮流约束的方法解决分布式电源优化配置问题,以实现分布式电源价值的最大化。从降损角度出发建立优化配置的数学模型,并用序列二次规划求解优化问题。在充分发挥序列二次规划法收敛性好的基础上,提高计算精度,并适用于各种复杂的配电网络。以IEEE33节点系统为例,验证所提方法在分布式电源优化配置问题求解中具有很强的全局搜索能力,可以有效、准确地实现分布式电源的最优配置,计算过程简单可靠,具有实用价值。  相似文献   

20.
This paper describes teaching learning based optimization (TLBO) algorithm to solve multi-objective optimal power flow (MOOPF) problems while satisfying various operational constraints. To improve the convergence speed and quality of solution, quasi-oppositional based learning (QOBL) is incorporated in original TLBO algorithm. The proposed quasi-oppositional teaching learning based optimization (QOTLBO) approach is implemented on IEEE 30-bus system, Indian utility 62-bus system and IEEE 118-bus system to solve four different single objectives, namely fuel cost minimization, system power loss minimization and voltage stability index minimization and emission minimization; three bi-objectives optimization namely minimization of fuel cost and transmission loss; minimization of fuel cost and L-index and minimization of fuel cost and emission and one tri-objective optimization namely fuel cost, minimization of transmission losses and improvement of voltage stability simultaneously. In this article, the results obtained using the QOTLBO algorithm, is comparable with those of TLBO and other algorithms reported in the literature. The numerical results demonstrate the capabilities of the proposed approach to generate true and well-distributed Pareto optimal non-dominated solutions of the multi-objective OPF problem. The simulation results also show that the proposed approach produces better quality of the individual as well as compromising solutions than other algorithms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号