首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
We study the state complexity of certain simple languages. If AA is an alphabet of kk letters, then a kk-language   is a nonempty set of words of length kk, that is, a uniform language of length kk. We show that the minimal state complexity of a kk-language is k+2k+2, and the maximal, (kk−1−1)/(k−1)+2k+1(kk11)/(k1)+2k+1. We prove constructively that, for every ii between the minimal and maximal bounds, there is a language of state complexity ii. We introduce a class of automata accepting sets of words that are permutations of AA; these languages define a complete hierarchy of complexities between k2−k+3k2k+3 and 2k+12k+1. The languages of another class of automata, based on kk-ary trees, define a complete hierarchy of complexities between 2k+12k+1 and (kk−1−1)/(k−1)+2k+1(kk11)/(k1)+2k+1. This provides new examples of uniform languages of maximal complexity.  相似文献   

4.
This work is concerned with simulating nondeterministic one-reversal multicounter automata (NCMs) by nondeterministic partially blind multihead finite automata (NFAs). We show that any one-reversal NCM with kk counters can be simulated by a partially blind NFA with kk blind heads. This provides a nearly complete categorization of the computational power of partially blind automata, showing that the power of a (k+1)(k+1)-NFA lies between that of a kk-NCM and a (k+1)(k+1)-NCM.  相似文献   

5.
This paper deals with the existence and search for properly edge-colored paths/trails between two, not necessarily distinct, vertices ss and tt in an edge-colored graph from an algorithmic perspective. First we show that several versions of the s−tst path/trail problem have polynomial solutions including the shortest path/trail case. We give polynomial algorithms for finding a longest properly edge-colored path/trail between ss and tt for a particular class of graphs and characterize edge-colored graphs without properly edge-colored closed trails. Next, we prove that deciding whether there exist kk pairwise vertex/edge disjoint properly edge-colored s−tst paths/trails in a cc-edge-colored graph GcGc is NP-complete even for k=2k=2 and c=Ω(n2)c=Ω(n2), where nn denotes the number of vertices in GcGc. Moreover, we prove that these problems remain NP-complete for cc-edge-colored graphs containing no properly edge-colored cycles and c=Ω(n)c=Ω(n). We obtain some approximation results for those maximization problems together with polynomial results for some particular classes of edge-colored graphs.  相似文献   

6.
We show how to support efficient back traversal in a unidirectional list, using small memory and with essentially no slowdown in forward steps. Using O(lgn)O(lgn) memory for a list of size nn, the ii’th back-step from the farthest point reached so far takes O(lgi)O(lgi) time in the worst case, while the overhead per forward step is at most ?? for arbitrary small constant ?>0?>0. An arbitrary sequence of forward and back steps is allowed. A full trade-off between memory usage and time per back-step is presented: kk vs. kn1/kkn1/k and vice versa. Our algorithms are based on a novel pebbling technique which moves pebbles on a virtual binary, or n1/kn1/k-ary, tree that can only be traversed in a pre-order fashion.  相似文献   

7.
The claw finding problem has been studied in terms of query complexity as one of the problems closely connected to cryptography. Given two functions, ff and gg, with domain sizes NN and MM(N≤M)(NM), respectively, and the same range, the goal of the problem is to find xx and yy such that f(x)=g(y)f(x)=g(y). This problem has been considered in both quantum and classical settings in terms of query complexity. This paper describes an optimal algorithm that uses quantum walk to solve this problem. Our algorithm can be slightly modified to solve the more general problem of finding a tuple consisting of elements in the two function domains that has a prespecified property. It can also be generalized to find a claw of kk functions for any constant integer k>1k>1, where the domain sizes of the functions may be different.  相似文献   

8.
Given a graph GG, an integer kk, and a demand set D={(s1,t1),…,(sl,tl)}D={(s1,t1),,(sl,tl)}, the kk-Steiner Forest problem finds a forest in graph GG to connect at least kk demands in DD such that the cost of the forest is minimized. This problem was proposed by Hajiaghayi and Jain in SODA’06. Thereafter, using a Lagrangian relaxation technique, Segev et al. gave the first approximation algorithm to this problem in ESA’06, with performance ratio O(n2/3logl)O(n2/3logl). We give a simpler and faster approximation algorithm to this problem with performance ratio O(n2/3logk)O(n2/3logk) via greedy approach, improving the previously best known ratio in the literature.  相似文献   

9.
Given a digraph DD, the Minimum Leaf Out-Branching problem (MinLOB) is the problem of finding in DD an out-branching with the minimum possible number of leaves, i.e., vertices of out-degree 0. We prove that MinLOB is polynomial-time solvable for acyclic digraphs. In general, MinLOB is NP-hard and we consider three parameterizations of MinLOB. We prove that two of them are NP-complete for every value of the parameter, but the third one is fixed-parameter tractable (FPT). The FPT parameterization is as follows: given a digraph DD of order nn and a positive integral parameter kk, check whether DD contains an out-branching with at most n−knk leaves (and find such an out-branching if it exists). We find a problem kernel of order O(k2)O(k2) and construct an algorithm of running time O(2O(klogk)+n6)O(2O(klogk)+n6), which is an ‘additive’ FPT algorithm. We also consider transformations from two related problems, the minimum path covering and the maximum internal out-tree problems into MinLOB, which imply that some parameterizations of the two problems are FPT as well.  相似文献   

10.
This paper concerns construction of additive stretched spanners with few edges for nn-vertex graphs having a tree-decomposition into bags of diameter at most δδ, i.e., the tree-length δδ graphs. For such graphs we construct additive 2δ2δ-spanners with O(δn+nlogn)O(δn+nlogn) edges, and additive 4δ4δ-spanners with O(δn)O(δn) edges. This provides new upper bounds for chordal graphs for which δ=1δ=1. We also show a lower bound, and prove that there are graphs of tree-length δδ for which every multiplicative δδ-spanner (and thus every additive (δ−1)(δ1)-spanner) requires Ω(n1+1/Θ(δ))Ω(n1+1/Θ(δ)) edges.  相似文献   

11.
A real xx is called hh-bounded computable  , for some function h:N→Nh:NN, if there is a computable sequence (xs)(xs) of rational numbers which converges to xx such that, for any n∈NnN, at most h(n)h(n) non-overlapping pairs of its members are separated by a distance larger than 2-n2-n. In this paper we discuss properties of hh-bounded computable reals for various functions hh. We will show a simple sufficient condition for a class of functions hh such that the corresponding hh-bounded computable reals form an algebraic field. A hierarchy theorem for hh-bounded computable reals is also shown. Besides we compare semi-computability and weak computability with the hh-bounded computability for special functions hh.  相似文献   

12.
Tag systems were invented by Emil Leon Post and proven recursively unsolvable by Marvin Minsky. These production systems have proved to be very useful in constructing small universal (Turing complete) systems for several different classes of computational systems, including Turing machines, and are thus important instruments for studying limits or boundaries of solvability and unsolvability. Although there are some results on tag systems and their limits of solvability and unsolvability, there are hardly any that consider both   the shift number vv and the number of symbols μμ. This paper aims to contribute to research on limits of solvability and unsolvability for tag systems, taking into account these two parameters. The main result is the reduction of the 3n+13n+1-problem to a surprisingly small tag system. It indicates that the present unsolvability line–defined in terms of μμ and vv–for tag systems might be significantly decreased.  相似文献   

13.
Let G=(V,E)G=(V,E) be a simple undirected graph with a set VV of vertices and a set EE of edges. Each vertex v∈VvV has a demand d(v)∈Z+d(v)Z+ and a cost c(v)∈R+c(v)R+, where Z+Z+ and R+R+ denote the set of nonnegative integers and the set of nonnegative reals, respectively. The source location problem with vertex-connectivity requirements in a given graph GG requires finding a set SS of vertices minimizing vSc(v)vSc(v) such that there are at least d(v)d(v) pairwise vertex-disjoint paths from SS to vv for each vertex v∈V−SvVS. It is known that if there exists a vertex v∈VvV with d(v)≥4d(v)4, then the problem is NP-hard even in the case where every vertex has a uniform cost. In this paper, we show that the problem can be solved in O(|V|4log2|V|)O(|V|4log2|V|) time if d(v)≤3d(v)3 holds for each vertex v∈VvV.  相似文献   

14.
15.
Let F(x,y)F(x,y) be a polynomial over a field KK and mm a nonnegative integer. We call a polynomial gg over KK an mm-near solution of F(x,y)F(x,y) if there exists a c∈KcK such that F(x,g)=cxmF(x,g)=cxm, and the number cc is called an mm-value of F(x,y)F(x,y) corresponding to gg. In particular, cc can be 0. Hence, by viewing F(x,y)=0F(x,y)=0 as a polynomial equation over K[x]K[x] with variable yy, every solution of the equation F(x,y)=0F(x,y)=0 in K[x]K[x] is also an mm-near solution. We provide an algorithm that gives all mm-near solutions of a given polynomial F(x,y)F(x,y) over KK, and this algorithm is polynomial time reducible to solving one variable equations over KK. We introduce approximate solutions to analyze the algorithm. We also give some interesting properties of approximate solutions.  相似文献   

16.
Matroid theory gives us powerful techniques for understanding combinatorial optimization problems and for designing polynomial-time algorithms. However, several natural matroid problems, such as 3-matroid intersection, are NP-hard. Here we investigate these problems from the parameterized complexity point of view: instead of the trivial nO(k)nO(k) time brute force algorithm for finding a kk-element solution, we try to give algorithms with uniformly polynomial (i.e., f(k)⋅nO(1)f(k)nO(1)) running time. The main result is that if the ground set of a represented linear matroid is partitioned into blocks of size ??, then we can determine in randomized time f(k,?)⋅nO(1)f(k,?)nO(1) whether there is an independent set that is the union of kk blocks. As a consequence, algorithms with similar running time are obtained for other problems such as finding a kk-element set in the intersection of ?? matroids, or finding kk terminals in a network such that each of them can be connected simultaneously to the source by ?? disjoint paths.  相似文献   

17.
We investigate the group key management problem for broadcasting applications. Previous work showed that, in handling key updates, batch rekeying can be more cost effective than individual rekeying. One model for batch rekeying is to assume that every user has probability pp of being replaced by a new user during a batch period with the total number of users unchanged. Under this model, it was recently shown that an optimal key tree can be constructed in linear time when pp is a constant and in O(n4)O(n4) time when p→0p0. In this paper, we investigate more efficient algorithms for the case p→0p0, i.e., when membership changes are sparse. We design an O(n)O(n) heuristic algorithm for the sparse case and show that it produces a nearly 2-approximation to the optimal key tree. Simulation results show that its performance is even better in practice. We also design a refined heuristic algorithm and show that it achieves an approximation ratio of 1+?1+? for any fixed ?>0?>0 and nn, as p→0p0. Finally, we give another approximation algorithm for any p∈(0,0.693)p(0,0.693) which is shown to be quite good by our simulations.  相似文献   

18.
We prove an explicit bound on the radius of a ball centered at the origin which is guaranteed to contain all bounded connected components of a semi-algebraic set S⊂RkSRk defined by a weak sign condition involving ss polynomials in Z[X1,…,Xk]Z[X1,,Xk] having degrees at most dd, and whose coefficients have bitsizes at most ττ. Our bound is an explicit function of s,d,ks,d,k and ττ, and does not contain any undetermined constants. We also prove a similar bound on the radius of a ball guaranteed to intersect every connected component of SS (including the unbounded components). While asymptotic bounds of the form 2τdO(k)2τdO(k) on these quantities were known before, some applications require bounds which are explicit and which hold for all values of s,d,ks,d,k and ττ. The bounds proved in this paper are of this nature.  相似文献   

19.
We define an operation called transposition on words of fixed length. This operation arises naturally when the letters of a word are considered as entries of a matrix. Words that are invariant with respect to transposition are of special interest. It turns out that transposition invariant words have a simple interpretation by means of elementary group theory. This leads us to investigate some properties of the ring of integers modulo nn and primitive roots. In particular, we show that there are infinitely many prime numbers pp with a primitive root dividing p+1p+1 and infinitely many prime numbers pp without a primitive root dividing p+1p+1. We also consider the orbit of a word under transposition.  相似文献   

20.
We consider orthogonal drawings of a plane graph GG with specified face areas. For a natural number kk, a kk-gonal drawing of GG is an orthogonal drawing such that the boundary of GG is drawn as a rectangle and each inner face is drawn as a polygon with at most kk corners whose area is equal to the specified value. In this paper, we show that every slicing graph GG with a slicing tree TT and a set of specified face areas admits a 10-gonal drawing DD such that the boundary of each slicing subgraph that appears in TT is also drawn as a polygon with at most 10 corners. Such a drawing DD can be found in linear time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号