共查询到20条相似文献,搜索用时 46 毫秒
1.
由于传统的自组织映射SOM方法对高维、非线性的网络流量数据的分类性能效果不佳,本文引入核方法,提出一种基于混合核函数的SOM(MIX-KSOM)网络流量分类方法。该方法结合了全局性和局部性核函数的优点,采用径向基函数和多项式函数线性组合构成的混合核函数代替内积作为距离度量,使输入空间中复杂的流量样本在特征空间得以简化。实验结果表明,采用MIX-KSOM方法能较好地对网络流量进行分类,较传统的SOM、采用单一核函数的SOM(KSOM)分类方法性能更好,分类准确率也高于NB方法。 相似文献
2.
3.
4.
由于网络流量数据高度非线性,传统的自组织映射(self-organizing maps,SOM)网络对此分类的鲁棒性和可靠性较差,提出了一种基于核函数的SOM(kernel SOM,KSOM)网络流量分类方法。该方法用核函数代替原始数据在特征空间中映射值的内积,使输入空间中复杂的流量样本结构在特征空间中得到简化,实现对有多个统计特征属性的网络流量在应用层的分类。实验结果表明,KSOM能识别新应用类型的流量,较传统的SOM更适合对网络流量进行分类,其分类准确率高于NB方法。 相似文献
5.
《计算机应用与软件》2015,(11)
针对基于核函数的自组织特征映射SOM(Self-organizing feature Map)算法中核函数的单一性选取和核函数参数的不确定性,提出一种基于PSO-混合核函数的SOM算法。用两种核函数混合构造新的核函数,采用改进的粒子群算法PSO对核函数中的参数以及两种核函数的混合参数进行优化确定,并应用于网络流量数据。实验结果表明,基于PSO-混合核函数的SOM算法,相对于传统的SOM算法以及单一核函数SOM算法,分类的可靠性和稳定性有明显的提高。 相似文献
6.
基于自组织特征映射神经网络的土壤分类 总被引:2,自引:0,他引:2
人工神经网络中的自组织特征映射网络具有较强的聚类功能,将自组织特征映射神经网络模型应用于土壤分类,提取影响土壤分类的七个理化因子,根据19个土壤样本建立神经网络,最后验证10个土壤样本的分类结果是否正确。分析结果表明,这种方法是十分有效和方便的。同时,本文对分类结果进行分析和讨论,指出利用该模型强大的学习功功能及很好的自适应性、自组织性和鲁棒性可以为土壤分类提供一种快速、准确的信息处理手段。 相似文献
7.
针对遥感图像多波段不易成像、其图像信息冗余不适合图像分类以及传统LMBP算法迭代次数多且分类不够精确的问题,改进了OIF指数和可分性距离公式,分组并选出遥感图像最佳波段组合,并运用改进的LMBP混合核函数算法进行分类。仿真实验表明,改进算法对各波段信息分析更加全面客观,波段选择更加优化;与传统算法相比,网络训练迭代次数有明显减少,分类精度及Kappa系数分别提高了5%和6.625%,遥感图像分类更有效。 相似文献
8.
9.
采用一维自组织特征映射神经网络对医学图像进行聚类分析,实现对不同组织的自动分割.避免了直接使用灰度门限分割方法由于门限值选择不当所导致的分割结果有失准确性的缺点.试验结果表明,利用该方法能够较好地保证分割结果的准确性和完整性. 相似文献
10.
在核函数的基础上采用向量扩展的方法改进传统的LMBP算法,将输入向量由低维转换到高维,充分利用误差函数的一二阶导数信息,同时结合传统LMBP算法的优点提高网络训练的收敛速度。仿真实验结果表明,改进方法网络训练的迭代次数更少,分类精度更高,对遥感图像分类更有效。 相似文献
11.
12.
Huizhen Zhao Fuxian Liu Zhibing Liang 《International journal of remote sensing》2013,34(22):8506-8527
ABSTRACTDeep convolutional neural network (CNN) transfer has recently shown strong performance in scene classification of high-resolution remote-sensing images. However, the majority of transfer learning solutions are categorized as homogeneous transfer learning, which ignores differences between target and source domains. In this paper, we propose a heterogeneous model to transfer CNNs to remote-sensing scene classification to correct input feature differences between target and source datasets. First, we extract filters from source images using the principal component analysis (PCA) method. Next, we convolute the target images with the extracted PCA filters to obtain an adopted target dataset. Then, a pretrained CNN is transferred to the adopted target dataset as a feature extractor. Finally, a classifier is used to accomplish remote-sensing scene classification. We conducted extensive experiments on the UC Merced dataset, the Brazilian coffee scene dataset and the Aerial Images Dataset to verify the effectiveness of the proposed heterogeneous model. The experimental results show that the proposed heterogeneous model outperforms the homogeneous model that uses pretrained CNNs as feature extractors by a wide margin and gains similar accuracies by fine-tuning a homogeneous transfer learning model with few training iterations. 相似文献
13.
《计算机与应用化学》2015,(10)
针对文本信息的分类问题,提出正向最大匹配分词算法与自组织映射神经网络融合算法(MMSOM)。利用正向最大匹配分词算法对文本信息进行自动提取,设定关键词信息规范框架,将规范化后的文本信息量化结果作为神经网络输入,结合文本分词结果,实现分类对象信息提取与分类的自动化。将该算法应用于藻类水华领域专家分类问题,分类结果表明了算法的可行性和有效性。 相似文献
14.
Chen Guoming Chen Qiang Long Shun Zhu Weiheng Yuan Zeduo Wu Yilin 《Pattern Analysis & Applications》2023,26(2):655-667
Pattern Analysis and Applications - In this paper we propose two scale-inspired local feature extraction methods based on Quantum Convolutional Neural Network (QCNN) in the Tensorflow quantum... 相似文献
15.
提出了一种基于小波网络的图像配准方法。将特征点定义进行了推广,提出了一种以特征区域定义和提取方法。使用Zernike矩表征区域的特征并进行特征区域的对应。因图像配准变换是复杂且难以预知的,利用小波神经网络具有良好的函数逼近性能,提出了具有局域特性的小波神经网络模型逼近图像的配准变换。实验表明这是一种有效的图像配准方法。 相似文献
16.
This paper examines a number of experimental investigations of neural networks used for the classification of remotely sensed satellite imagery at the Joint Research Centre over a period of five years, and attempts to draw some conclusions about 'best practice' techniques to optimize network training and overall classification performance. The paper examines best practice in such areas as: network architecture selection; use of optimization algorithms; scaling of input data; avoidance of chaos effects; use of enhanced feature sets; and use of hybrid classifier methods. It concludes that a vast body of accumulated experience is now available, and that neural networks can be used reliably and with much confidence for routine operational requirements in remote sensing. 相似文献
17.
Zhang Yuezhong Wang Shi Zhao Honghua Guo Zhenhua Sun Dianmin 《Neural computing & applications》2021,33(14):8191-8200
Neural Computing and Applications - With the rapid development of the Internet, image information is explosively growing. Traditional image classification methods are difficult to deal with huge... 相似文献
18.
为了对高维非线性的高光谱影像进行降维及信息提取,提出了高光谱影像核最小噪声分离变换(kernel minimum noise fraction,KMNF)特征提取后利用BP神经网络分类的方法.以高光谱影像KMNF特征提取后的前几个特征分量作为BP神经网络的输入,进行BP神经网络分类,并与单独的高光谱影像BP神经网络分类进行比较.美国内华达州CUPRITE矿区AVIRIS数据的实验结果表明,基于KMNF和BP神经网络的高光谱影像分类较单独BP神经网络分类总体精度及时间性能均得到提高. 相似文献
19.
Jingjuan Guo Caihong Yuan Zhiqiang Zhao Ping Feng Tianjiang Wang Fang Liu 《Multimedia Tools and Applications》2018,77(23):30233-30250
With the rise of deep neural network, convolutional neural networks show superior performances on many different computer vision recognition tasks. The convolution is used as one of the most efficient ways for extracting the details features of an image, while the deconvolution is mostly used for semantic segmentation and significance detection to obtain the contour information of the image and rarely used for image classification. In this paper, we propose a novel network named bi-branch deconvolution-based convolutional neural network (BB-deconvNet), which is constructed by mainly stacking a proposed simple module named Zoom. The Zoom module has two branches to extract multi-scale features from the same feature map. Especially, the deconvolution is borrowed to one of the branches, which can provide distinct features differently from regular convolution through the zoom of learned feature maps. To verify the effectiveness of the proposed network, we conduct several experiments on three object classification benchmarks (CIFAR-10, CIFAR-100, SVHN). The BB-deconvNet shows encouraging performances compared with other state-of-the-art deep CNNs. 相似文献
20.
Neural Computing and Applications - The classification of land cover is the first step in the analysis and application of remote sensing data in land resources. How to solve the multi-category... 相似文献