首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
王鑫  刘方爱 《计算机应用》2016,36(7):1988-1992
针对已有的多数据流协同频繁项集挖掘算法存在内存占用率高以及发现频繁项集效率低的问题,提出了改进的多数据流协同频繁项集挖掘(MCMD-Stream)算法。首先,该算法利用单遍扫描数据库的字节序列滑动窗口挖掘算法发现数据流中的潜在频繁项集和频繁项集;其次,构建类似频繁模式树(FP-Tree)的压缩频繁模式树(CP-Tree)存储已发现的潜在频繁项集和频繁项集,同时更新CP-Tree树中每个节点生成的对数倾斜时间表中的频繁项计数;最后,通过汇总分析得出在多条数据流中多次出现的且有价值的频繁项集,即协同频繁项集。相比A-Stream和H-Stream算法,MCMD-Stream算法不仅能够提高多数据流中协同频繁项集挖掘的效率,并且还降低了内存空间的使用率。实验结果表明MCMD-Stream算法能够有效地应用于多数据流的协同频繁项集挖掘。  相似文献   

2.
陈安龙  唐常杰  傅彦  廖勇 《软件学报》2008,19(6):1413-1421
设计了数据流预测查询的新模型,包括局域流能量预测、能量分布模式挖掘及预测序列的重构和数据流能量的度量方法;设计了融合数据流能量回归与基于频繁模式的小波分解预测新方法,并将新算法推广到强偶合多数据流的预测查询;提出了最近最频繁序列模式的新概念,并应用于局域流能量分解;在真实数据上的模拟实验,验证了算法的有效性.  相似文献   

3.
朱美玲  刘晨  王雄斌  韩燕波 《软件学报》2017,28(6):1498-1515
针对伴随车辆检测这一新兴的智能交通应用,在一种特殊的流式时空大数据-车牌识别流式大数据下,重新定义Platoon伴随模式,提出PlatoonFinder算法,即时地在车牌识别数据流上挖掘Platoon伴随模式.本文的主要贡献包括:第一,将Platoon伴随模式发现问题映射为数据流上的带有时空约束的频繁序列挖掘问题.与传统频繁序列挖掘算法仅考虑序列元素之间位置关系不同,本文算法能够在频繁序列挖掘的过程中有效处理序列元素之间复杂的时空约束关系;第二,本文算法融入了伪投影等性能优化技术,针对数据流的特点进行了性能优化,能够有效应对车牌识别流式大数据的速率和规模,从而实现车辆Platoon伴随模式的即时发现.通过在真实车牌识别数据集上的实验分析表明,PlatoonFinder算法的平均延时显著低于经典的Aprior和PrefixSpan等频繁模式挖掘算法,也低于真实情况下交通摄像头的车牌识别最小时间间隔.因此,本文所提出的算法可以有效的发现伴随车辆组及其移动模式.  相似文献   

4.
序列模式挖掘就是在时序数据库中挖掘相对时间或其他模式出现频率高的模式.序列模式发现是最重要的数据挖掘任务之一,并有着广阔的应用前景.针对静态数据库,序列模式挖掘已经被深入的研究.近年来,出现了一种新的数据形式:数据流.针对基于数据流的序列模式挖掘的研究还不是十分深入.提出一个有效的基于数据流的挖掘频繁序列模式的算法SSPM,利用到2个数据结构(F-list和Tatree)来处理基于数据流的序列模式挖掘的复杂性问题.SSPM的优点是可以最大限度地降低负正例的产生,实验表明SSPM具有较高的准确率.  相似文献   

5.
频繁项集是通过对大规模数据进行挖掘获取的代表数据模式的知识结构.非可导频繁项集作为频繁项集的有效压缩方式,能够高效深入地挖掘海量数据、稠密数据与数据流当中的规律.针对项集在计算界限值时代价昂贵的缺点,提出了近似可导项集的概念,并基于纵向数据格式实现了挖掘算法MANDI,能够提高支持度计算和项集间操作的速度.另外,为了满足数据流实时、快速的特点,讨论并证明了近似可导项集的增量性质,提出了可动态更新的算法UANDI.通过实验验证了两种算法的可行性和有效性.  相似文献   

6.
作为当前数据流挖掘研究的热点之一,多数据流聚类要求在跟踪多个数据流随时间演化的同时按其相似程度进行划分。文中提出一种基于灰关联分析并结合近邻传播聚类的多数据流聚类方法。该方法基于一种灰关联度,将多个数据流的原始数据压缩成可增量更新的灰关联概要信息,并根据该信息计算多个数据流之间的灰关联度作为其相似性测度,最后应用近邻传播聚类算法生成聚类结果。在真实数据集上的对比实验证明该方法的有效性。  相似文献   

7.
挖掘数据流中的频繁模式   总被引:18,自引:1,他引:17  
发现数据流中的频繁项是数据流挖掘中最基本的问题之一.数据流的无限性和流动性使得传统的频繁模式挖掘算法难以适用.针对数据流的特点,在借鉴FP-growth算法的基础上.提出了一种数据流频繁模式挖掘的新方法:FP—DS算法.算法采用数据分段的思想,逐段挖掘频繁项集,用户可以连续在线获得当前的频繁项集,可以有效地挖掘所有的频繁项集,算法尤其适合长频繁项集的挖掘.通过引入误差ε,裁减了大量的非频繁项集,减少了数据的存储量,也能保证整个数据集中项目集支持度误差不超过ε.分析和实验表明算法有较好的性能.  相似文献   

8.
挖掘数据流最近时间窗口内频繁模式   总被引:1,自引:0,他引:1  
由于流数据的流动性与连续性,传统的频繁模式挖掘算法不能直接应用于数据流频繁模式挖掘.挖掘数据流上最近的频繁模式算法使用模式树RFP-tree增量维护数据流上最近的频繁模式,且仅需单次扫描流数据;另外,保守计算策略保证模式挖掘的正确性.仿真试验结果显示,该算法的效率优于其它同类算法.  相似文献   

9.
信息系统产生的大量事务日志数据蕴含着潜在的伴随模式,伴随模式是指在时空上频繁共现的一组对象.由于传统的滑动窗口算法和FP-Growth算法只能调用单一线程进行计算,随着数据规模的扩张,会导致挖掘伴随模式的时间急剧增加.为此本文提出了一种基于Fork/Join并行技术的伴随模式挖掘框架,其能够实现从单线程到多线程的迁移,充分利用多核配置的加速性能.该框架由划定伴随数据集、频繁项集挖掘和关联规则挖掘三部分组成.首先,提出了基于Fork/Join的多核并行滑动窗口算法,以缩短从事务日志中划定伴随数据集的时间;然后,提出基于Fork/Join的多核并行FP-Growth算法,以并行地挖掘伴随数据集中的频繁项集;最后,引入支持度、置信度和提升度3个参数,对伴随模式中各对象间的关联规则进行挖掘.基于门禁刷卡数据的实验结果表明,相比传统算法,本文所提出的框架能够挖掘出更多的伴随模式,同时挖掘效率较高.  相似文献   

10.
数据流频繁模式挖掘算法设计   总被引:1,自引:0,他引:1  
介绍了数据流频繁模式的概念和定义,提出了数据流频繁模式挖掘算法的通用数据流处理模型,详细总结了数据流频繁模式挖掘算法的三种分类方式:"窗口模型"、"结果集类型"和"结果集精确性".基于这些分类方法提出了数据流频繁模式挖掘算法的设计立方体,该立方体不仅涵盖了现有的数据流频繁模式挖掘算法,还对设计新的算法具有指导意义.基于设计立方体,分析了设计算法时应当采取的有效策略,旨在为设计新算法提供一个有力参考.最后讨论了数据流频繁模式挖掘的进一步研究工作.  相似文献   

11.
基于Hadoop分布式计算平台,给出一种适用于大数据集的并行挖掘算法。该算法对非结构化的原始大数据集以及中间结果文件进行垂直划分以确保能够获得完整的频繁项集,将各个垂直分块数据分配给不同的Hadoop计算节点进行处理,以减少各个计算节点的存储数据,进而减少各个计算节点执行交集操作的次数,提高并行挖掘效率。实验结果表明,给出的并行挖掘算法解决了大数据集挖掘过程中产生的大量数据通信、中间数据以及执行大量交集操作的问题,算法高效、可扩展。  相似文献   

12.
Scalability is a primary issue in existing sequential pattern mining algorithms for dealing with a large amount of data. Previous work, namely sequential pattern mining on the cloud (SPAMC), has already addressed the scalability problem. It supports the MapReduce cloud computing architecture for mining frequent sequential patterns on large datasets. However, this existing algorithm does not address the iterative mining problem, which is the problem that reloading data incur additional costs. Furthermore, it did not study the load balancing problem. To remedy these problems, we devised a powerful sequential pattern mining algorithm, the sequential pattern mining in the cloud-uniform distributed lexical sequence tree algorithm (SPAMC-UDLT), exploiting MapReduce and streaming processes. SPAMC-UDLT dramatically improves overall performance without launching multiple MapReduce rounds and provides perfect load balancing across machines in the cloud. The results show that SPAMC-UDLT can significantly reduce execution time, achieves extremely high scalability, and provides much better load balancing than existing algorithms in the cloud.  相似文献   

13.
韩萌  丁剑 《计算机应用》2019,39(3):719-727
一些先进应用如欺诈检测和趋势学习等带来了数据流频繁模式挖掘的发展。不同于静态数据,数据流挖掘面临着时空约束和项集组合爆炸等问题。对已有数据流频繁模式挖掘算法进行综述并对经典和最新算法进行分析。按照模式集合的完整程度进行分类,数据流中频繁模式分为全集模式和压缩模式。压缩模式主要包括闭合模式、最大模式、top-k模式以及三者的组合模式。不同之处是闭合模式是无损压缩的,而其他模式是有损压缩的。为了得到有趣的频繁模式,可以挖掘基于用户约束的模式。为了处理数据流中的新近事务,将算法分为基于窗口模型和基于衰减模型的方法。数据流中模式挖掘常见的还包含序列模式和高效用模式,对经典和最新算法进行介绍。最后给出了数据流模式挖掘的下一步工作。  相似文献   

14.
An efficient algorithm for discovering frequent subgraphs   总被引:8,自引:0,他引:8  
Over the years, frequent itemset discovery algorithms have been used to find interesting patterns in various application areas. However, as data mining techniques are being increasingly applied to nontraditional domains, existing frequent pattern discovery approaches cannot be used. This is because the transaction framework that is assumed by these algorithms cannot be used to effectively model the data sets in these domains. An alternate way of modeling the objects in these data sets is to represent them using graphs. Within that model, one way of formulating the frequent pattern discovery problem is that of discovering subgraphs that occur frequently over the entire set of graphs. We present a computationally efficient algorithm, called FSG, for finding all frequent subgraphs in large graph data sets. We experimentally evaluate the performance of FSG using a variety of real and synthetic data sets. Our results show that despite the underlying complexity associated with frequent subgraph discovery, FSG is effective in finding all frequently occurring subgraphs in data sets containing more than 200,000 graph transactions and scales linearly with respect to the size of the data set.  相似文献   

15.
As data have been accumulated more quickly in recent years, corresponding databases have also become huger, and thus, general frequent pattern mining methods have been faced with limitations that do not appropriately respond to the massive data. To overcome this problem, data mining researchers have studied methods which can conduct more efficient and immediate mining tasks by scanning databases only once. Thereafter, the sliding window model, which can perform mining operations focusing on recently accumulated parts over data streams, was proposed, and a variety of mining approaches related to this have been suggested. However, it is hard to mine all of the frequent patterns in the data stream environment since generated patterns are remarkably increased as data streams are continuously extended. Thus, methods for efficiently compressing generated patterns are needed in order to solve that problem. In addition, since not only support conditions but also weight constraints expressing items’ importance are one of the important factors in the pattern mining, we need to consider them in mining process. Motivated by these issues, we propose a novel algorithm, weighted maximal frequent pattern mining over data streams based on sliding window model (WMFP-SW) to obtain weighted maximal frequent patterns reflecting recent information over data streams. Performance experiments report that MWFP-SW outperforms previous algorithms in terms of runtime, memory usage, and scalability.  相似文献   

16.
高维类别属性数据流离群点快速检测算法   总被引:1,自引:1,他引:1  
提出类别属性数据流数据离群度量--加权频繁模式离群因子(weighted frequent pattern outlier factor,简称WFPOF),并在此基础上给出一种快速数据流离群点检测算法FODFP-Stream(fast outlier detection for high dimensional categorical data streams based on frequent pattern).该算法通过动态发现和维护频繁模式来计算离群度,能够有效地处理高维类别属性数据流,并可进一步扩  相似文献   

17.
A transaction database usually consists of a set of time-stamped transactions. Mining frequent patterns in transaction databases has been studied extensively in data mining research. However, most of the existing frequent pattern mining algorithms (such as Apriori and FP-growth) do not consider the time stamps associated with the transactions. In this paper, we extend the existing frequent pattern mining framework to take into account the time stamp of each transaction and discover patterns whose frequency dramatically changes over time. We define a new type of patterns, called transitional patterns, to capture the dynamic behavior of frequent patterns in a transaction database. Transitional patterns include both positive and negative transitional patterns. Their frequencies increase/decrease dramatically at some time points of a transaction database. We introduce the concept of significant milestones for a transitional pattern, which are time points at which the frequency of the pattern changes most significantly. Moreover, we develop an algorithm to mine from a transaction database the set of transitional patterns along with their significant milestones. Our experimental studies on real-world databases illustrate that mining positive and negative transitional patterns is highly promising as a practical and useful approach for discovering novel and interesting knowledge from large databases.  相似文献   

18.
快速挖掘全局频繁项目集   总被引:32,自引:1,他引:32  
分布式环境中,全局频繁项目集的挖掘是数据挖掘中最重要的研究课题之一.传统的全局频繁项目集挖掘算法采用Apriori算法框架,须多遍扫描数据库并产生大量的候选项目集,且通过传送局部频繁项目集求全局频繁项目集的网络通信代价高.为此,提出了一种分布数据库的全局频繁项目集快速挖掘算法——FMAGF.FMAGF算法采用传送条件频繁模式树或条件模式基来挖掘全局频繁项目集,可有效地减小网络通信量,提高全局频繁项目集挖掘效率.理论分析和实验结果表明提出的算法是有效可行的.  相似文献   

19.
无候选项的频繁邻近类别集挖掘算法   总被引:1,自引:0,他引:1       下载免费PDF全文
针对现有的频繁邻近类别集挖掘算法因产生候选项而存在冗余计算,提出一种无候选项的频繁邻近类别集挖掘算法,其适合在海量数据中挖掘空间对象的频繁邻近类别集;该算法以交叉搜索方式,用产生邻近类别集非空真子集的方法来计算支持数,实现一次扫描数据库挖掘频繁邻近类别集。算法无需产生候选频繁邻近类别集,且计算支持数时无需重复扫描数据库,达到了提高挖掘效率的目的。实验结果表明其在海量空间数据中挖掘频繁邻近类别集时,该算法比现有算法更快速更有效。  相似文献   

20.
张永梅  郭莎  季艳  马礼  张睿 《计算机科学》2018,45(3):223-230
大多数数据库都不能有效地处理数据的时间维度,时空同现模式挖掘有利于提取隐含在时空数据集中有价值的信息,目前已经成为研究热点。针对现有同现模式发现方法挖掘效率较低的问题,采用双层网络对时空数据进行初始化建模,针对传统方法在进行时空兴趣度计算时未考虑对象类型存在有效周期的问题,改进了现有兴趣度计算方法,引入了权重特征值,并提出了基于网络的时空同现模式挖掘算法。实验表明,在使用不同数据量的测试集中挖掘同现模式集时,新算法的运行效率优于不对数据集进行建模的方法以及仅对实例层进行建模的方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号