首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 156 毫秒
1.
现有的对于Piccolo算法的安全性分析结果中,除Biclique分析外,以低于穷举搜索的复杂度最长仅攻击至14轮Piccolo-80和18轮Piccolo-128算法.通过分析Piccolo算法密钥扩展的信息泄漏规律,结合算法等效结构,利用相关密钥-不可能差分分析方法,基于分割攻击思想,分别给出了15轮Piccolo-80和21轮Piccolo-128含前向白化密钥的攻击结果.当选择相关密钥量为28时,攻击所需的数据复杂度分别为258.6和262.3,存储复杂度分别为260.6和264.3,计算复杂度分别为278和282.5;在选择相关密钥量为24时,攻击所需的数据复杂度均为262.6和262.3,存储复杂度分别为264.6和264.3,计算复杂度分别为277.93和2124.45.分析结果表明,仅含前向白化密钥的15轮Piccolo-80算法和21轮Piccolo-128算法在相关密钥-不可能差分攻击下是不安全的.  相似文献   

2.
本文提出了一个Midori64算法的7轮不可能差分区分器,并研究了Midori64算法所用S盒的一些差分性质。在密钥恢复过程中,提出将分组的部分单元数据寄存,分步猜测轮密钥的方法,使时间复杂度大幅下降。利用这个区分器和轮密钥分步猜测的方法,给出了Midori64算法的11轮不可能差分攻击,最终时间复杂度为 次11轮加密,数据复杂度为 个64比特分组。这个结果是目前为止对Midori64算法不可能差分分析中最好的。  相似文献   

3.
基于2001年ASIACRYPT(亚密会)会议上Sugita等人提出的9轮截断差分区分器, 提出了Camellia算法的10轮截断差分区分器。进一步地利用这个区分器和密钥恢复中的提前抛弃技术, 给出了12轮Camellia-128的攻击, 恢复出所有密钥的数据复杂度和时间复杂度分别为297和2124。这个结果是目前针对Camellia算法的截断差分攻击中最好的。  相似文献   

4.
李永光  曾光  韩文报 《计算机科学》2015,42(11):217-221
Crypton密码算法是韩国学者提出的一种AES候选算法。通过研究Crypton算法的结构特征和一类截断差分路径的性质,利用差分枚举技术权衡存储复杂度和数据复杂度,提出了4轮和4.5轮中间相遇区分器。新的区分器减少了预计算表中的多重集数量,降低了存储复杂度。基于4轮区分器首次给出对7轮Crypton-128的中间相遇攻击,时间复杂度为2113,数据复杂度为2113,存储复杂度为290.72。基于4.5轮区分器首次给出对8轮Crypton-192的中间相遇攻击,时间复杂度为2172,数据复杂度为2113,存储复杂度为2138。  相似文献   

5.
高红杰  卫宏儒 《计算机科学》2017,44(10):147-149, 181
轻量级分组密码算法ESF是一种具有广义Feistel结构的32轮迭代型分组密码,轮函数具有SPN结构,分组长度为64比特,密钥长度为80比特。为了研究ESF算法抵抗不可能差分攻击的能力,基于一条8轮不可能差分路径,根据轮密钥之间的关系,通过向前增加2轮、向后增加2轮的方式,对12轮ESF算法进行了攻击。计算结果表明,攻击12轮ESF算法所需的数据复杂度为O(253),时间复杂度为O(260.43),由此说明12轮的ESF算法对不可能差分密码分析是不免疫的。  相似文献   

6.
石淑英  何骏 《计算机工程》2019,45(10):134-138
GRANULE算法是一个超轻量分组密码算法,有着较好的软硬件实现性能,但目前尚没有该算法在不可能差分分析下的安全性评估结果。为此,利用中间相错技术,找到GRANULE64算法多条5轮不可能差分区分器,并基于得到的区分器,向上、下分别扩展3轮,给出对GRANULE64/80算法的11轮不可能差分分析。通过该算法可以恢复80-bit主密钥,时间复杂度为2~(73.3)次11轮GRANULE64算法加密,数据复杂度为2~(64)个选择明文。  相似文献   

7.
Midori算法是由Banik等人在AISACRYPT2015上提出的一种具有SPN结构的轻量级的加密算法。Midori的分组长度有64bit和128bit两种,分别为Midori64和Midori128,本文主要研究的Midori64。目前攻击者已经使用了不可能差分分析、中间相遇攻击、相关密钥差分分析等方法对Midori进行了分析,却没有使用相关密钥不可能差分分析进行分析。为了验证Midori算法的安全性,本文使用了相关密钥不可能差分分析了Midori算法,构造了一个Midori算法的9轮区分器,进行了Midori算法的14轮攻击,总共猜测了84bit密钥。  相似文献   

8.
陈玉磊  卫宏儒 《计算机科学》2016,43(8):89-91, 99
分析研究了分组密码算法ESF抵抗不可能差分的能力,使用8轮不可能差分路径,给出了相关攻击结果。基于一条8轮的不可能差分路径,根据轮密钥之间的关系,通过改变原有轮数扩展和密钥猜测的顺序,攻击了11轮的ESF,改善了关于11轮的ESF的不可能差分攻击的结果。计算结果表明:攻击11轮的ESF所需要的数据复杂度为O(253),时间复杂度为O(232),同时也说明了11轮的ESF对不可能差分是不免疫的。  相似文献   

9.
Robin算法是Grosso等人在2014年提出的一个分组密码算法。研究该算法抵抗不可能差分攻击的能力。利用中间相错技术构造一条新的4轮不可能差分区分器,该区分器在密钥恢复阶段涉及到的轮密钥之间存在线性关系,在构造的区分器首尾各加一轮,对6轮Robin算法进行不可能差分攻击。攻击的数据复杂度为2118.8个选择明文,时间复杂度为293.97次6轮算法加密。与已有最好结果相比,在攻击轮数相同的情况下,通过挖掘轮密钥的信息,减少轮密钥的猜测量,进而降低攻击所需的时间复杂度,该攻击的时间复杂度约为原来的2?8。  相似文献   

10.
孙翠玲  卫宏儒 《计算机科学》2015,42(7):191-193, 228
为研究分组加密算法SMS4抵抗不可能差分攻击的能力,使用了14轮不可能差分路径,给出了相关攻击结果。基于1条14轮不可能差分路径,对16轮和18轮的SMS4算法进行了攻击,改进了关于17轮的SMS4的不可能差分攻击的结果,将数据复杂度降低到O(269.47)。计算结果表明:攻击16轮SMS4算法所需的数据复杂度为O(2103),时间复杂度为O(292);攻击18轮的SMS4算法所需的数据复杂度为O(2104),时间复杂度为O(2123.84)。  相似文献   

11.
王超  陈怀凤 《计算机工程》2021,47(5):117-123
积分攻击是一种重要的密钥恢复攻击方法,已被广泛应用于多种分组算法分析任务。Midori64算法是一种轻量级分组密码算法,为对其进行积分攻击,构建3个6轮零相关区分器,将其分别转化为6轮平衡积分区分器并合成为一个性质优良的6轮零和积分区分器,将该零和积分区分器向前扩展1轮得到一个7轮零和积分区分器。分别采用部分和技术与快速Walsh-Hadamard变换技术,得到Midori64算法的10轮积分攻击和11轮积分攻击。分析结果表明,10轮积分攻击的数据复杂度为240个明密文对,时间复杂度为267.85次10轮加密运算,11轮积分攻击的数据复杂度为240.09个明密文对,时间复杂度为2117.37次11轮加密运算。  相似文献   

12.
尚方舟  孙兵  刘国强  李超 《软件学报》2021,32(9):2837-2848
积分分析是一种针对分组密码十分有效的分析方法,其通常利用密文某些位置的零和性质构造积分区分器.基于高阶差分理论,可通过研究密文与明文之间多项式的代数次数来确定密文某些位置是否平衡.从传统的积分分析出发,首次考虑常数对多项式首项系数的影响,提出了概率积分分析方法,并将其应用于PUFFIN算法的安全性分析.针对PUFFIN算法,构造了7轮概率积分区分器,比已有最好的积分区分器轮数长1轮.进一步,利用构造的概率积分区分器,对9轮PUFFIN算法进行密钥恢复攻击.该攻击可恢复92比特轮密钥,攻击的数据复杂度为224.8个选择明文,时间复杂度为235.48次9轮算法加密,存储复杂度为220个存储单元.  相似文献   

13.
Sony在2011年提出的Piccolo算法密钥分为80bit(Piccolo-80)和128bit(Piccolo-128)。设计者使用包括相关密钥不可能差分在内的多种攻击方法对算法进行了安全分析,认为对于Piccolo的相关密钥不可能差分攻击分析只能实现11轮(80bit)和17轮(128bit),但并未给出具体分析过程和实例。本文使用U-method方法对Piccolo算法进行了相关密钥不可能差分分析,并最终给出11轮和17轮的差分路径实例。  相似文献   

14.
如何针对分组密码标准ARIA给出新的安全性分析是当前的研究热点。基于ARIA的算法结构,利用中间相遇的思想设计了一个新的4轮不可能差分区分器。基于该区分器,结合ARIA算法特点,在前面加2轮,后面加1轮,构成7轮ARIA-256的新攻击。研究结果表明:攻击7轮ARIA-256所需的数据复杂度约为2120选择明文数据量,所需的时间复杂度约为2219次7轮ARIA-256加密。与已有的7轮ARIA-256不可能差分攻击结果相比较,新攻击进一步地降低了所需的数据复杂度和时间复杂度。  相似文献   

15.
PRINCE算法是J.Borghoff等在2012年亚密会上提出的一个轻量级分组密码算法,它模仿AES并采用α-反射结构设计,具有加解密相似的特点.2014年,设计者发起了针对PRINCE实际攻击的公开挑战,使得该算法的安全性成为研究的热点.目前对PRINCE攻击的最长轮数是10轮,其中P.Derbez等利用中间相遇技术攻击的数据和时间复杂度的乘积D×T=2125,A.Canteaut等利用多重差分技术攻击的复杂度D×T=2118.5,并且两种方法的时间复杂度都超过了257.本文将A.Canteaut等给出的多重差分技术稍作改变,通过考虑输入差分为固定值,输出差分为选定的集合,给出了目前轮数最长的7轮PRINCE区分器,并应用该区分器对8轮PRINCE进行了密钥恢复攻击.本文的7轮PRINCE差分区分器的概率为2-56.89,8轮PRINCE的密钥恢复攻击所需的数据复杂度为261.89个选择明文,时间复杂度为219.68次8轮加密,存储复杂度为215.21个16比特计数器.相比目前已知的8轮PRINCE密钥恢复攻击的结果,包括将A.Canteaut等给出的10轮攻击方案减少到8轮,本文给出的攻击方案的时间复杂度和D×T复杂度都是最低的.  相似文献   

16.
轻量级分组密码由于软硬件实现代价小且功耗低,被广泛地运用资源受限的智能设备中保护数据的安全。Midori是在2015年亚密会议上发布的轻量级分组密码算法,分组长度分为64 bit和128 bit两种,分别记为Midori64和Midori128,目前仍没有Midori128抵抗中间相遇攻击的结果。通过研究Midori128算法基本结构和密钥编排计划特点,结合差分枚举和相关密钥筛选技巧构造了一条7轮中间相遇区分器。再在此区分器前端增加一轮,后端增加两轮,利用时空折中的方法,提出对10轮的Midori128算法的第一个中间相遇攻击,整个攻击需要的时间复杂度为2126.5次10轮Midori128加密,数据复杂度为2125选择明文,存储复杂度2105 128-bit块,这是首次对Midori128进行了中间相遇攻击。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号