首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 171 毫秒
1.
This paper proposes a framework to design an event‐triggered based robust control law for linear uncertain system. The robust control law is realized through both static and dynamic event‐triggering approach to reduce the computation and communication usages. Proposed control strategies ensure stability in the presence of bounded matched and mismatched system uncertainties. Derivation of event‐triggering rule with a non‐zero positive inter‐event time and corresponding stability criteria for uncertain event‐triggered system are the key contributions of this paper. The efficacy of proposed algorithm is carried out through a comparative study of simulation results.  相似文献   

2.
This paper mainly investigates the event‐triggered control for couple‐group multi‐agent systems with communication delay. Logarithmic quantization is considered in the communication channels. Event‐triggered control laws are adopted to reduce the frequency of individual actuation updating for discrete‐time agent dynamics. The proposed protocol is efficient as long as the quantization levels are dense enough, i.e. the density of quantization levels goes to infinity is a sufficient condition for the asymptotic consensus of the multi‐agent systems. It turns out that the bounded consensus depends on not only the density of quantization levels, but also the updating strategy of events. Finally, a simulation example is given to demonstrate the effectiveness of the proposed methods.  相似文献   

3.
In this paper, we consider the robust practical output regulation problem for a class of SISO uncertain linear minimum‐phase systems subject to external disturbances by an output‐based event‐triggered control law, where the reference inputs and the external disturbances are both generated by a so‐called exosystem with known dynamics. Our approach consists of two steps. First, on the basis of the internal model principle, we convert the problem into the robust practical stabilization problem of a well‐defined augmented system. Second, we design an output‐based event‐triggered mechanism and an output‐based event‐triggered control law to solve the stabilization problem, which in turn leads to the solvability of the original problem. What is more, we show that the event‐triggered mechanism prevents the Zeno behavior from happening. A numerical example is given to illustrate the design. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

4.
This paper addresses the finite‐time and the prescribed finite‐time event‐triggered consensus tracking problems for second‐order multi‐agent systems (MASs) with uncertain disturbances. The prescribed finite‐time event‐triggered consensus of the second‐order disturbed MASs was obtained for the first time and the controller is nonsingular. Furthermore, a new self‐triggered control scheme is presented for the finite‐time consensus tracking, and the continuous communication can be avoided in the triggering condition monitoring. Hence, the finite‐time consensus tracking can be achieved with intermittent communication. Moreover, Zeno behavior is excluded for each follower. The efficiency of the proposed algorithms is verified by numerical simulations.  相似文献   

5.
This paper focuses on the event‐based distributed robust leaderless synchronization control for multiple Euler‐Lagrange systems with directed communication topology that contains a directed spanning tree. Update frequency of the system is reduced by taking advantages of the event‐triggered approach, which can help extend the service life of the controller. Robust control theory is employed to guarantee the synchronization stability of the networked Euler‐Lagrange systems when unmodeled dynamics occur. The cost on the distributed synchronization protocol design can be saved due to the relaxation of the requirement on relative velocity measurements. Furthermore, our results are more practical because unknown disturbance is taken into consideration. In addition, it can be rigorously analyzed that each agent can exclude the undesired Zeno behavior. Some simulation examples are provided in the end to demonstrate the effectiveness of the proposed event‐based distributed robust control algorithm.  相似文献   

6.
In this paper, we develop a novel event‐triggered robust control strategy for continuous‐time nonlinear systems with unmatched uncertainties. First, we build a relationship to show that the event‐triggered robust control can be obtained by solving an event‐triggered nonlinear optimal control problem of the auxiliary system. Then, within the framework of reinforcement learning, we propose an adaptive critic approach to solve the event‐triggered nonlinear optimal control problem. Unlike typical actor‐critic dual approximators used in reinforcement learning, we employ a unique critic approximator to derive the solution of the event‐triggered Hamilton‐Jacobi‐Bellman equation arising in the nonlinear optimal control problem. The critic approximator is updated via the gradient descent method, and the persistence of excitation condition is necessary. Meanwhile, under a newly proposed event‐triggering condition, we prove that the developed critic approximator update rule guarantees all signals in the auxiliary closed‐loop system to be uniformly ultimately bounded. Moreover, we demonstrate that the obtained event‐triggered optimal control can ensure the original system to be stable in the sense of uniform ultimate boundedness. Finally, a F‐16 aircraft plant and a nonlinear system are provided to validate the present event‐triggered robust control scheme.  相似文献   

7.
The paper addresses the distributed event‐triggered consensus problem in directed topologies for multi‐agent systems (MAS) with general linear dynamic agents. A co‐design approach is proposed to determine parameters of the consensus controller and its event‐triggered mechanism (ETM), simultaneously. This approach guarantees asymptotic stability along with decreasing data transmission among agents. In the proposed event‐based consensus controller, each agent broadcasts data to the neighbors only at its own triggering instants; this differs from previous studies in which continuous data streams among agents were required. Furthermore, the proposed control law is based on the piecewise constant functions of the measurement values, which are updated at triggering instants. In this case the control scheme decreases the communication network usage, energy consumption, and wear of the actuator. As a result, it facilitates distributed implementation of the proposed consensus controller for real‐world applications. A theorem is proved to outline sufficient conditions to guarantee the asymptotic stability of the closed‐loop system with the event‐based consensus controller. Another theorem is also proved to show the Zeno behavior exclusion. As a case study, the proposed event‐based controller is applied for a diving consensus problem to illustrate the effectiveness of the method.  相似文献   

8.
In this paper, we study the event‐triggered global robust practical output regulation problem for a class of nonlinear systems in output feedback form with any relative degree. Our approach consists of the following three steps. First, we design an internal model and an observer to form the so‐called extended augmented system. Second, we convert the original problem into the event‐triggered global robust practical stabilization problem of the extended augmented system. Third, we design an output‐based event‐triggered control law and a Zeno‐free output‐based event‐triggered mechanism to solve the stabilization problem, which, in turn, leads to the solvability of the original problem. Finally, we apply our result to the controlled hyperchaotic Lorenz systems.  相似文献   

9.
This paper proposes a control architecture that employs event‐triggered control techniques to achieve output synchronization of a group of heterogeneous linear time‐invariant agents. We associate with each agent an event‐triggered output regulation controller and an event‐triggered reference generator. The event‐triggered output regulation controller is designed such that the regulated output of the agent approximately tracks a reference signal provided by the reference generator in the presence of unknown disturbances. The event‐triggered reference generator is responsible for synchronizing its internal state across all agents by exchanging information through a communication network linking the agents. We first address the output regulation problem for a single agent where we analyze two event‐triggered scenarios. In the first one, the output and input event detectors operate synchronously, meaning that resets are made at the same time instants, while in the second one, they operate asynchronously and independently of each other. It is shown that the tracking error is globally bounded for all bounded reference trajectories and all bounded disturbances. We then merge the results on event‐triggered output regulation with previous results on event‐triggered communication protocols for synchronization of the reference generators to demonstrate that the regulated output of each agent converges to and remains in a neighborhood of the desired reference trajectory and that the closed‐loop system does not exhibit Zeno solutions. Several examples are provided to illustrate the advantages and issues of every component of the proposed control architecture. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
In this paper, the guaranteed cost finite‐time control for semi‐Markov jump systems with unknown transition rates is addressed. An event‐triggered scheme is constructed to automatically monitor the data transmission and the input quantization is involved to reduce the cost of control. Different from the existing general transition rates in the semi‐Markov jump systems, the upper and lower bounds of transition rates are not given in advance but obtained through the stability criteria. The stability criteria are established to verify the stochastic finite‐time boundedness of the closed‐loop event‐triggered system and estimate the performance index of the given cost function. A guaranteed cost optimal controller is also proposed to stabilize the considered system. Finally, the vertical take‐off and landing helicopter model is introduced to verify the effectiveness of the main algorithms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号