首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
This paper is concerned with the global practical tracking via adaptive output feedback for a class of uncertain nonlinear systems. The system under investigation possesses function control coefficients, the polynomial-of-output growth rate and serious unknowns in the system nonlinearities and the reference signal, and hence is essentially different from those in the closely related literature. To solve the problem, a high-gain observer is introduced to reconstruct the unmeasured system states. The involved high gain is the multiplication of two dynamic gains: one is to compensate the polynomial-of-output in the system growth rate, and the other one is to overcome the serious unknowns in the system and reference signal and the extra system nonlinearities in function control coefficients. Based on the high-gain observer, an adaptive output-feedback controller is successfully designed to guarantee that, for any initial condition of the system, all signals of the closed-loop system are bounded, and the tracking error will be prescribed sufficiently small after a finite time. A numerical example demonstrates the effectiveness of the proposed method.  相似文献   

2.
This paper considers the global finite‐time output‐feedback stabilization for a class of uncertain nonlinear systems. Comparing with the existing related literature, two essential obstacles exist: On the one hand, the systems in question allow serious parametric unknowns and serious time variations coupling to the unmeasurable states, which is reflected in that the systems have the unmeasurable states dependent growth with the rate being an unknown constant multiplying a known continuous function of time. On the other hand, the systems possess remarkably inherent nonlinearities, whose growth allows to be not only low‐order but especially high‐order with respect to the unmeasurable states. To effectively cope with these obstacles, we established a time‐varying output‐feedback strategy to achieve the finite‐time stabilization for the systems under investigation. First, a time‐varying state‐feedback controller is constructed by adding an integrator method, and by homogeneous domination approach, a time‐varying reduced‐order observer is designed to precisely rebuild the unmeasurable states. Then, by certainty equivalence principle, a desired time‐varying output‐feedback controller is constructed for the systems. It is shown that, as long as the involved time‐varying gain is chosen fast enough to overtake the serious parametric unknowns and the serious time variations, the output‐feedback controller renders that the closed‐loop system states converge to zero in finite time. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

3.
This paper considers the global stabilization via time‐varying output‐feedback for a class of high‐order uncertain nonlinear systems with rather weak assumptions. Essentially different from the existing literature, the systems under investigation simultaneously have more serious nonlinearities, unknowns, immeasurableness, and time‐variations, which are indicated from the unknown time‐varying control coefficients and the higher‐order and lower‐order unmeasured states dependent growth with the rate of unknown function of time and output. Recognizing that adaptive technique is quite hard to apply, a time‐varying design scheme is proposed by combining time‐varying approach, certainty equivalence principle and homogeneous domination approach. One key point in the design scheme is the selection of the design functions of time, in order to compensate/capture the serious unknowns and serious time‐variations, and another one is the design of a time‐varying observer to rebuild the unmeasured system states. With the appropriate choice of the involved design functions, the designed controller makes all the signals of the closed‐loop system globally bounded and ultimately converge to zero. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
In this paper, we describe a dyadic adaptive control framework for output tracking in a class of semilinear systems of partial differential equations with boundary actuation and unknown distributed nonlinearities. The dyadic adaptive control framework uses the linear terms in the system to split the plant into 2 virtual subsystems, one of which contains the nonlinearities, whereas the other contains the control input. Full‐plant‐state feedback is used to estimate the unmeasured individual states of the 2 subsystems as well as the nonlinearities. The control signal is designed to ensure that the controlled subsystem tracks a suitably modified reference signal. We prove the well posedness of the closed‐loop system rigorously and derive conditions for closed‐loop stability and robustness using finite‐gain stability theory.  相似文献   

5.
This paper is concerned with the problem of adaptive output feedback quantised tracking control for a class of stochastic nonstrict-feedback nonlinear systems with asymmetric input saturation. Especially, both input and output signals are quantised by two sector-bounded quantisers. In order to solve the technical difficulties originating from asymmetric saturation nonlinearities and sector-bounded quantisation errors, some special technique, approximation-based methods and Gaussian error function-based continuous differentiable model are exploited. Meanwhile, an observer including the quantised input and output signals is designed to estimate the states. Then, a novel output feedback adaptive quantised control scheme is proposed to ensure that all signals in the closed-loop system are 4-moment (2-moment) semi-globally uniformly ultimately bounded while the output signal follows a desired reference signal. Finally, the effectiveness and applicability of the design methodology is illustrated with two simulation examples.  相似文献   

6.
In this paper, a discontinuous projection‐based adaptive robust control (ARC) scheme is constructed for a class of nonlinear systems in an extended semi‐strict feedback form by incorporating a nonlinear observer and a dynamic normalization signal. The form allows for parametric uncertainties, uncertain nonlinearities, and dynamic uncertainties. The unmeasured states associated with the dynamic uncertainties are assumed to enter the system equations in an affine fashion. A novel nonlinear observer is first constructed to estimate the unmeasured states for a less conservative design. Estimation errors of dynamic uncertainties, as well as other model uncertainties, are dealt with effectively via certain robust feedback control terms for a guaranteed robust performance. In contrast with existing conservative robust adaptive control schemes, the proposed ARC method makes full use of the available structural information on the unmeasured state dynamics and the prior knowledge on the bounds of parameter variations for high performance. The resulting ARC controller achieves a prescribed output tracking transient performance and final tracking accuracy in the sense that the upper bound on the absolute value of the output tracking error over entire time‐history is given and related to certain controller design parameters in a known form. Furthermore, in the absence of uncertain nonlinearities, asymptotic output tracking is also achieved. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

7.
Based on the approximation property of fuzzy logic systems, we propose a novel non‐backstepping adaptive tracking control algorithm for a class of single input single output (SISO) strict‐feedback nonlinear systems with unknown dead‐zone input. In this algorithm, we introduce some novel state variables and coordinate transforms to convert the strict‐feedback form into a normal one, and it is not necessary to consider the traditional approximation‐based the backstepping scheme. Due to new states variables being unavailable, the tracking control is changed from a state‐feedback one to an output‐feedback one. So, observers need to be designed to estimate the indirect nonmeasurable states. According to Lyapunov stability analysis method, the developed controller can guarantee that all of the signals in the closed‐loop system will be ultimately uniformly bounded (UUB), and the output can track the reference signal very well. Simulation results are presented to show the effectiveness of the proposed approach.  相似文献   

8.
This paper addresses the problem of designing an output error feedback control for single-input, single-output nonlinear systems with uncertain, smooth, output-dependent nonlinearities whose local Lipschitz constants are known. The considered systems are required to be observable, minimum phase with known relative degree and known high frequency gain sign: linear systems are included. The reference output signal is assumed to be smooth and periodic with known period. By developing in Fourier series expansion a suitable periodic input reference signal, an output error feedback adaptive learning control is designed which ldquolearnsrdquo the input reference signal by identifying its Fourier coefficients: bounded closed loop signals and exponential tracking of both input and output reference signals are obtained when the Fourier series expansion is finite, while arbitrary small tracking errors are exponentially achieved otherwise. The resulting control is not model based, is independent of the system order and depends only on the relative degree, the reference signal period and the high frequency gain sign.  相似文献   

9.
This article synthesizes a recursive filtering adaptive fault‐tolerant tracking control method for uncertain switched multivariable nonlinear systems. The multivariable nonlinear systems under consideration have both matched and mismatched uncertainties, which satisfy the semiglobal Lipschitz condition. A piecewise constant adaptive law generates adaptive parameters by solving the error dynamics with the neglection of unknowns, and the recursive least squares is employed to minimize the residual error by categorizing the total uncertainty estimates into matched and mismatched components. A filtering control law is designed to compensate the actuator faults and nonlinear uncertainties such that a good tracking performance is delivered with guaranteed robustness. The matched component is canceled directly by adopting their opposite in the control signal, whereas a dynamic inversion of the system is performed to eliminate the effect of the mismatched component on the output. By exploiting the average dwell time principle, the error bounds are derived for the states and control inputs compared with the virtual reference system which defines the best performance that can be achieved by the closed‐loop system. Both numerical and practical examples are provided to illustrate the effectiveness of the proposed switching recursive filtering adaptive fault‐tolerant tracking control architecture, comparisons with model reference adaptive control are also carried out.  相似文献   

10.
This paper is concerned with the global output feedback stabilization for a class of nonholonomic systems with unknown parameter, polynomial‐of‐output, and unmeasurable states dependent growth. A dynamic high‐gain observer is first designed to reconstruct the unmeasurable system states and, in addition, to compensate the serious parameter unknowns in nonlinear drifts. Then, we design a compact adaptive controller without invoking the backstepping technique, which reduces the complexity of controller. Additionally, a switching control strategy is employed to overcome the smooth feedback obstacle associated with nonholonomic systems. It is shown that the proposed control laws guarantee that all closed‐loop system states are globally bounded and ultimately converge to zero. The simulation results demonstrate the effectiveness of the proposed control strategy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号