共查询到10条相似文献,搜索用时 62 毫秒
1.
This study concerns disturbance rejection for a modified repetitive control system (MRCS) that contains a strictly proper plant with time-varying uncertainties. Since an MRCS is affected by both periodic and aperiodic disturbances, and since the disturbances are often unknown, an equivalent-input-disturbance (EID)-based estimator was added to an MRCS to yield an EID-based MRCS that compensates for all types of disturbances. In this system, the repetitive controller ensures tracking of a periodic reference input, and the incorporation of an EID estimate into the control input enables rejection of unknown periodic and aperiodic disturbances. A robust stability condition for the MRCS was established in the form of a linear matrix inequality, and the condition was used to design the parameters of the controller. This design method handles uncertainties and enables the preferential adjustment of the tracking and control performance of the MRCS. Simulation results demonstrate the validity of the method. 相似文献
2.
This paper presents a disturbance rejection method for an affine nonlinear system. The control system is constructed based on the equivalent‐input‐disturbance (EID) approach. An affine nonlinear state observer is used to reconstruct the state of the affine nonlinear system and to estimate an EID. The well‐known differential mean value theorem enables us to describe the closed‐loop system in the state space as a linear‐parameter‐varying system. This makes it easy to derive sufficient conditions of global uniform ultimate boundedness in term of linear matrix inequalities (LMIs) by using a Lyapunov function and convexity theory. Controllers are designed based on the LMIs. A numerical example is used to illustrate the design of the control system. And a comparison between the EID‐based control and the sliding‐mode control demonstrates the effectiveness and advantages of the EID‐based control method. 相似文献
3.
This paper presents a disturbance‐rejection method for a modified repetitive control system with a nonlinearity. Taking advantage of stable inversion, an improved equivalent‐input‐disturbance (EID) estimator that is more relaxed for system design is developed to estimate and cancel out the influence of the disturbance and nonlinearity in the low‐frequency domain. The high‐frequency influence is filtered owning to the low‐pass nature of the linear part of the closed‐loop system. To avoid the restrictive commutative condition and choose a Lyapunov function of a more general form, a new design algorithm, which takes into account the relation between the feedback control gains and the observer and improved EID estimator gains, is developed for the nonlinear system. Furthermore, comparisons with the generalized extended‐state observer (GESO) and conventional EID methods are conducted. A clear relation between the developed estimator and the GESO is also clarified. Finally, simulations show the effectiveness and the advantage of the developed method. 相似文献
4.
In this paper, a general control scheme for disturbance rejection is presented. It is an extension of the disturbance observer used in mechatronics, and made applicable to time‐delay processes. It is shown that the proposed control scheme can achieve better load response in general and reject periodic disturbance asymptotically in particular. Stability analysis and disturbance rejection performance are provided. Simulation results confirm that the proposed method yields superior load response compared to the classical feedback system. 相似文献
5.
6.
This paper aims to investigate the input‐to‐state exponents (IS‐e) and the related input‐to‐state stability (ISS) for delayed discrete‐time systems (DDSs). By using the method of variation of parameters and introducing notions of uniform and weak uniform M‐matrix, the estimates for 3 kinds of IS‐e are derived for time‐varying DDSs. The exponential ISS conditions with parts suitable for infinite delays are thus established, by which the difference from the time‐invariant case is shown. The exponential stability of a time‐varying DDS with zero external input cannot guarantee its ISS. Moreover, based on the IS‐e estimates for DDSs, the exponential ISS under events criteria for DDSs with impulsive effects are obtained. The results are then applied in 1 example to test synchronization in the sense of ISS for a delayed discrete‐time network, where the impulsive control is designed to stabilize such an asynchronous network to the synchronization. 相似文献
7.
8.
Jinhua She Kou Miyamoto Qing-Long Han Min Wu Hiroshi Hashimoto Qing-Guo Wang 《IEEE/CAA Journal of Automatica Sinica》2023,10(4):957-968
Active disturbance-rejection methods are effective in estimating and rejecting disturbances in both transient and steady-state responses.This paper presents a deep observation on and a comparison between two of those methods:the generalized extended-state observer(GESO) and the equivalent input disturbance(EID) from assumptions,system configurations,stability conditions,system design,disturbance-rejection performance,and extensibility.A time-domain index is introduced to assess the disturbance-r... 相似文献
9.
In this paper, a robust H∞ control problem is considered for an uncertain singular system. An active disturbance rejection method called equivalent input disturbance (EID) is used to reduce the influence of exogenous disturbances and uncertainties on the system. At the first, there exists an EID, which can produces the same effect on the system as disturbances and uncertainties do in the control channel according to the EID concept. Then, an EID estimator is constructed to estimate the influence of EID on the system. Finally, based on Lyapunov stability theory, a static output feedback‐based robust H∞ controller combined with EID estimate is designed, guaranteeing that closed‐loop system is admissible (regular, impulse‐free, and stable) with a prescribed H∞ performance level. Compared with traditional H∞ control method, H∞ control based on EID method improve the control performance of the system. A numerical example demonstrates the validity of the method. 相似文献
10.
This paper investigates a novel disturbance estimation and characterization‐based robust control scheme of the manned submersible in the presence of external disturbances and model uncertainties. First of all, a finite‐time disturbance observer is designed to estimate the lumped disturbances of the manned submersible system. Then, a novel disturbance characterization index is defined via Lyapunov theory to indicate whether the lumped disturbances harm or benefit the manned submersible system. The control law is developed via the disturbance characterization–based backstepping control (DCB‐BC) method to remove the detrimental disturbances and to keep the beneficial disturbances of the manned submersible. Additionally, the rigorous stability analysis is given based on Lyapunov theory. Furthermore, some simulation results verify the effectiveness of the proposed DCB‐BC method. The key novelty of this paper is that the disturbances are explicitly used in the controller design to achieve better control performance and disturbance rejection capability. 相似文献