首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 62 毫秒
1.
This article considers stabilization of a one‐dimensional Schrödinger equation with variable coefficient and boundary observation which suffers from an arbitrary given time delay. We design an observer and predictor to stabilize the system. The state is estimated in the time span where the observation is available, and also predicted in the time interval where the observation is not available. It is shown that the estimated state feedback stabilizes the system exponentially. A numerical simulation is presented to illustrate the effect of the stabilizing controller.  相似文献   

2.
In this paper, we are concerned with the output feedback control design for a system (plant) described by a boundary controlled anti‐stable one‐dimensional Schrödinger equation. Our output measure signals are the displacements at both side. An untraditional infinite‐dimensional disturbance estimator is developed to estimate the disturbance. Based on the estimator, we propose a state observer that is exponentially convergent to the original system and then design a stabilizing control law consisting of two parts: The first part is to compensate the disturbance by using its approximated value and the second part is to stabilize the observer system by applying the classical backstepping approach. The resulting closed‐loop system is shown to be exponentially stable with guaranteeing that all internal systems are uniformly bounded. An effective output‐based disturbance rejection control algorithm is concluded. An application, namely, a cascade of ODE–wave systems, is investigated by the developed control algorithm. Numerical experiments are carried out to illustrate the effectiveness of the proposed control law. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

3.
In this paper, we are concerned with the boundary stabilization of a one‐dimensional anti‐stable Schrödinger equation subject to boundary control matched disturbance. We apply both the sliding mode control (SMC) and the active disturbance rejection control (ADRC) to deal with the disturbance. By the SMC approach, the disturbance is supposed to be bounded only. The existence and uniqueness of the solution for the closed‐loop system is proved and the ‘reaching condition’ is obtained. Considering the SMC usually requires the large control gain and may exhibit chattering behavior, we develop the ADRC to attenuate the disturbance for which the derivative is also supposed to be bounded. Compared with the SMC, the advantage of the ADRC is not only using the continuous control but also giving an online estimation of the disturbance. It is shown that the resulting closed‐loop system can reach any arbitrary given vicinity of zero as time goes to infinity and high gain tuning parameter goes to zero. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
This paper studies the basic properties of the Schrödinger equation defined on a bounded domain of with partial Dirichlet control and colocated observation. It is shown that the system is not only wellposed in the sense of D. Salamon but also regular in the sense of G. Weiss. It is also shown that the corresponding feedthrough operator is zero.  相似文献   

5.
We show that a corollary of a local approximate controllability result for the bilinear rod equation in [1] is that the controls which “steer” the modes of the rod equation also move the modes of a controlled Schrödinger equation. Specifying a target point for the Schrödinger system restricts but does not determine the outcome of the controlled rod equation. The local result is a special case of a general local result for hyperbolic systems, which is used in [1] to obtain a global approximate controllability result. After modifying the latter, we obtain a global result for the two systems.  相似文献   

6.
In this paper, we are concerned with a cascade of ODE‐wave systems with the control actuator‐matched disturbance at the boundary of the wave equation. We use the sliding mode control (SMC) technique and the active disturbance rejection control method to overcome the disturbance, respectively. By the SMC approach, the disturbance is supposed to be bounded only. The existence and uniqueness of solution for the closed‐loop via SMC are proved, and the monotonicity of the ‘reaching condition’ is presented without the differentiation of the sliding mode function, for which it may not always exist for the weak solution of the closed‐loop system. Considering that the SMC usually requires the large control gain and may exhibit chattering behavior, we then develop an active disturbance rejection control to attenuate the disturbance. The disturbance is canceled in the feedback loop. The closed‐loop systems with constant high gain and time‐varying high gain are shown respectively to be practically stable and asymptotically stable. Then we continue to consider output feedback stabilization for this coupled ODE‐wave system, and we design a variable structure unknown input‐type state observer that is shown to be exponentially convergent. The disturbance is estimated through the extended state observer and then canceled in the feedback loop by its approximated value. These enable us to design an observer‐based output feedback stabilizing control to this uncertain coupled system. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
本文讨论边界带有控制输入非同位的内部不确定和外部扰动的Euler-Bernoulli梁方程输出跟踪问题. 为处理边界干扰, 文章首先设计了一个新的总扰动估计器, 在线估计未知扰动. 其次基于估计出来的总扰动, 设计一个伺服系统跟踪参考信号. 最后根据自抗扰方法获得控制输出跟踪的反馈控制. 闭环系统被证明是适定和有界的, 且受控系统的输出指数跟踪参考信号.  相似文献   

8.
Often considered in numerical simulations related to the control of quantum systems, the so-called monotonic schemes have not been so far much studied from the functional analysis point of view. Yet, these procedures provide an efficient constructive method for solving a certain class of optimal control problems. This paper aims both at extending the results already available about these algorithms in the finite-dimensional case (i.e., the time-discretized case) and at completing those of the continuous case. This paper starts with some results about the regularity of a functional related to a wide class of models in quantum chemistry. These enable us to extend an inequality due to Łojasiewicz to the infinite-dimensional case. Finally, some inequalities proving the Cauchy character of the monotonic sequence are obtained, followed by an estimation of the rate of convergence.  相似文献   

9.
This paper describes moving variable mesh finite difference schemes to numerically solve the nonlinear Schrödinger equation including the effects of damping and nonhomogeneity in the propagation media. These schemes have accurately predicted the location of the peak of soliton compared to the uniform mesh, for the case in which the exact solution is known. Numerical results are presented when damping and nonhomogeneous effects are included, and in the absence of these effects the results were verified with the available exact solution.  相似文献   

10.
This paper is devoted to a multiresolution approach for solving laser-molecule Time-Dependent Schrödinger Equations (TDSE) in strong and high frequency fields. It is well known that short and intense laser-molecule interactions lead to complex nonlinear phenomena that necessitate an accurate numerical approximation of the TDSE. In particular, intense electric fields rapidly delocalize molecule wavefunctions so that their support can vary a lot during the interaction. In this kind of physical configurations, mesh adaption is a usual compromise between precision and computational efficiency. We then propose to explore numerically mesh adaptation for TDSE using a multiresolution analysis coupled with a Crank-Nicolson-like scheme. We then discuss the efficiency and the drawbacks of such a strategy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号