首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Model predictive control (MPC) has become one of the most popular control techniques in the process industry mainly because of its ability to deal with multiple-input–multiple-output plants and with constraints. However, in the presence of model uncertainties and disturbances its performance can deteriorate. Therefore, the development of robust MPC techniques has been widely discussed during the last years, but they were rarely, if at all, applied in practice due to the conservativeness or the computational complexity of the approaches. In this paper, we present multi-stage NMPC as a promising robust non-conservative nonlinear model predictive control scheme. The approach is based on the representation of the evolution of the uncertainty by a scenario tree, and leads to a non-conservative robust control of the uncertain plant because the adaptation of future inputs to new information is taken into account. Simulation results show that multi-stage NMPC outperforms standard and min–max NMPC under the presence of uncertainties for a semi-batch polymerization benchmark problem. In addition, the advantages of the approach are illustrated for the case where only noisy measurements are available and the unmeasured states and the uncertainties have to be estimated using an observer. It is shown that better performance can be achieved than by estimating the unknown parameters online and adapting the plant model.  相似文献   

2.
The implementation of model predictive control (MPC) requires to solve an optimization problem online. The computation time, often not negligible especially for nonlinear MPC (NMPC), introduces a delay in the feedback loop. Moreover, it impedes fast sampling rate setting for the controller to react to uncertainties quickly. In this paper, a dual time scale control scheme is proposed for linear/nonlinear systems with external disturbances. A pre-compensator works at fast sampling rate to suppress uncertainty, while the outer MPC controller updates the open loop input sequence at a slower rate. The computation delay is explicitly considered and compensated in the MPC design. Four robust MPC algorithms for linear/nonlinear systems in the literature are adopted and tailored for the proposed control scheme. The recursive feasibility and stability are rigorously analysed. Three simulation examples are provided to validate the proposed approaches.  相似文献   

3.
Model predictive control (MPC) is a well-established controller design strategy for linear process models. Because many chemical and biological processes exhibit significant nonlinear behaviour, several MPC techniques based on nonlinear process models have recently been proposed. The most significant difference between these techniques is the computational approach used to solve the nonlinear model predictive control (NMPC) optimization problem. Consequently, analysis of NMPC techniques is often connected to the computational approach employed. In this paper, a theoretical analysis of unconstrained NMPC is presented that is independent of the computational approach. A nonlinear discrete-time, state-space model is used to predict the effects of future inputs on future process outputs. It is shown that model inverse, pole-placement, and steady-state controllers can be obtained by suitable selection of the control and prediction horizons. Moreover, the NMPC optimization problem can be modified to yield nonlinear internal model control (NIMC). The computational requirements of NIMC are considerably less than NMPC, but the NIMC approach is currently restricted to nonlinear models with well-defined and stable inverses. The NIMC controller is shown to provide superior servo and regulatory performance to a linear IMC controller for a continuous stirred tank reactor.  相似文献   

4.
Model Predictive Control (MPC) has recently found wide acceptance in the process industry, but existing design and implementation methods are restricted to linear process models. A chemical process, however, involves severe nonlinearity which cannot be ignored in practice. This paper aims to solve this nonlinear control problem by extending MPC to accommodate nonlinear models. It develops an analytical framework for nonlinear model predictive control (NMPC). It also offers a third-order Volterra series based nonparametric nonlinear modelling technique for NMPC design, which relieves practising engineers from the need for deriving a physical-principles based model first. An on-line realisation technique for implementing NMPC is then developed and applied to a Mitsubishi Chemicals polymerisation reaction process. Results show that this nonlinear MPC technique is feasible and very effective. It considerably outperforms linear and low-order Volterra model based methods. The advantages of the developed approach lie not only in control performance superior to existing NMPC methods, but also in eliminating the need for converting an analytical model and then convert it to a Volterra model obtainable only up to the second order.  相似文献   

5.
Model predictive control (MPC) schemes are now widely used in process industries for the control of key unit operations. Linear model predictive control (LMPC) schemes which make use of linear dynamic model for prediction, limit their applicability to a narrow range of operation (or) to systems which exhibit mildly nonlinear dynamics.

In this paper, a nonlinear observer based model predictive controller (NMPC) for nonlinear system has been proposed. An approach to design NMPC based on fuzzy Kalman filter (FKF) and augmented state fuzzy Kalman filter (ASFKF) has been presented. The efficacy of the proposed NMPC schemes have been demonstrated by conducting simulation studies on the continuous stirred tank reactor (CSTR). The analysis of the extensive dynamic simulation studies revealed that, the NMPC schemes formulated produces satisfactory performance for both servo and regulatory problems. Simulation results also include an inferential control case, where the reactor concentration is not measured but estimated from temperature measurement and used in the NMPC based on FKF and ASFKF formulations.  相似文献   


6.
The problem of robust adaptive predictive control for a class of discrete-time nonlinear systems is considered. First, a parameter estimation technique, based on an uncertainty set estimation, is formulated. This technique is able to provide robust performance for nonlinear systems subject to exogenous variables. Second, an adaptive MPC is developed to use the uncertainty estimation in a framework of min–max robust control. A Lipschitz-based approach, which provides a conservative approximation for the min–max problem, is used to solve the control problem, retaining the computational complexity of nominal MPC formulations and the robustness of the min–max approach. Finally, the set-based estimation algorithm and the robust predictive controller are successfully applied in two case studies. The first one is the control of anonisothermal CSTR governed by the van de Vusse reaction. Concentration and temperature regulation is considered with the simultaneous estimation of the frequency (or pre-exponential) factors of the Arrhenius equation. In the second example, a biomedical model for chemotherapy control is simulated using control actions provided by the proposed algorithm. The methods for estimation and control were tested using different disturbances scenarios.  相似文献   

7.
In this paper, a synthesis of model predictive control (MPC) algorithm is presented for uncertain systems subject to structured time‐varying uncertainties and actuator saturation. The system matrices are not exactly known, but are affine functions of a time varying parameter vector. To deal with the nonlinear actuator saturation, a saturated linear feedback control law is expressed into a convex hull of a group of auxiliary linear feedback laws. At each time instant, a state feedback law is designed to ensure the robust stability of the closed‐loop system. The robust MPC controller design problem is formulated into solving a minimization problem of a worst‐case performance index with respect to model uncertainties. The design of controller is then cast into solving a feasibility of linear matrix inequality (LMI) optimization problem. Then, the result is further extended to saturation dependent robust MPC approach by introducing additional variables. A saturation dependent quadratic function is used to reduce the conservatism of controller design. To show the effectiveness, the proposed robust MPC algorithms are applied to a continuous‐time stirred tank reactor (CSTR) process.  相似文献   

8.
In this work, we consider nonlinear systems with input constraints and uncertain variables, and develop a robust hybrid predictive control structure that provides a safety net for the implementation of any model predictive control (MPC) formulation, designed with or without taking uncertainty into account. The key idea is to use a Lyapunov-based bounded robust controller, for which an explicit characterization of the region of robust closed-loop stability can be obtained, to provide a stability region within which any available MPC formulation can be implemented. This is achieved by devising a set of switching laws that orchestrate switching between MPC and the bounded robust controller in a way that exploits the performance of MPC whenever possible, while using the bounded controller as a fall-back controller that can be switched in at any time to maintain robust closed-loop stability in the event that the predictive controller fails to yield a control move (due, e.g., to computational difficulties in the optimization or infeasibility) or leads to instability (due, e.g., to inappropriate penalties and/or horizon length in the objective function). The implementation and efficacy of the robust hybrid predictive control structure are demonstrated through simulations using a chemical process example.  相似文献   

9.
In recent years, nonlinear model predictive control (NMPC) schemes have been derived that guarantee stability of the closed loop under the assumption of full state information. However, only limited advances have been made with respect to output feedback in the framework of nonlinear predictive control. This paper combines stabilizing instantaneous state feedback NMPC schemes with high-gain observers to achieve output feedback stabilization. For a uniformly observable MIMO system class it is shown that the resulting closed loop is asymptotically stable. Furthermore, the output feedback NMPC scheme recovers the performance of the state feedback in the sense that the region of attraction and the trajectories of the state feedback scheme can be recovered to any degree of accuracy for large enough observer gains, thus leading to semi-regional results. Additionally, it is shown that the output feedback controller is robust with respect to static sector bounded nonlinear input uncertainties.  相似文献   

10.
In this paper, a novel hierarchical multirate control scheme for nonlinear discrete‐time systems is presented, consisting of a robust nonlinear model predictive controller (NMPC) and a multirate sliding mode disturbance compensator (MSMDC). The proposed MSMDC acts at a faster rate than the NMPC in order to keep the system as close as possible to the nominal trajectory predicted by NMPC despite model uncertainties and external disturbances. The a priori disturbance compensation turns out to be very useful in order to improve the robustness of the NMPC controller. A dynamic input allocation between MSMDC and NMPC allows to maximize the benefits of the proposed scheme that unites the advantages of sliding mode control (strong reduction of matched disturbances, low computational burden) to those of NMPC (optimality, constraints handling). Sufficient conditions required to guarantee input‐to‐state stability and constraints satisfaction by the overall scheme are also provided. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
In this paper a nonlinear model predictive control (NMPC) based on a Wiener model with a piecewise linear gain is presented. This approach retains all the interested properties of the classical linear model predictive control (MPC) and keeps computations easy to solve due to the canonical structure of the nonlinear gain. Some guidelines for the identification of the nominal model as well as the uncertainty bounds are discussed, and two examples that show the possibility of application of this control scheme to real life problems are presented.  相似文献   

12.
A fundamental question about model predictive control (MPC) is its robustness to model uncertainty. In this paper, we present a robust constrained output feedback MPC algorithm that can stabilize plants with both polytopic uncertainty and norm-bound uncertainty. The design procedure involves off-line design of a robust constrained state feedback MPC law and a state estimator using linear matrix inequalities (LMIs). Since we employ an off-line approach for the controller design which gives a sequence of explicit control laws, we are able to analyze the robust stabilizability of the combined control laws and estimator, and by adjusting the design parameters, guarantee robust stability of the closed-loop system in the presence of constraints. The algorithm is illustrated with two examples.  相似文献   

13.
Nonlinear model predictive control (NMPC) with economic objective attracts growing interest. In our previous work [1], nominal stability of economically oriented NMPC for cyclic processes was proved by introducing a transformed system, and an infinite horizon NMPC formulation with discount factors was proposed. Moreover, the nominal stability property for economically oriented NMPC was analyzed in [2] for a class of systems satisfying strong duality. In this study, we extend the previous stability analysis in [1] to a general infinite horizon NMPC formulation with economic objectives. Instead of the strong duality assumption, we require the stage cost to be strongly convex, which is easier to check for a general nonlinear system. In addition, robust stability of this NMPC controller is also analyzed based on the Input-to-State Stability (ISS) framework. A simulated nonlinear double tank system subject to periodic change in electricity price is presented to illustrate the stability property. Finally, an industrial size air separation unit case study with periodic electricity cost is presented.  相似文献   

14.
We analyze the inherent robustness properties of an economic NMPC formulation in which the controller trades off rate of convergence and economic performance. We show that this controller is input-to-state practically stable under reasonable assumptions. Our formulation does not require dissipativity with respect to the stage costs being optimized, as is required by existing economic MPC formulations. Instead, our formulation enforces dissipation in the form of a Lyapunov inequality that is constructed by using traditional tracking cost terms. Consequently, the proposed approach can be applied to a wider range of systems. We also demonstrate that the controller provides high flexibility to optimize economic performance and remains robust in the face of disturbances.  相似文献   

15.
A novel approach to progress improvement of the economic performance in model predictive control (MPC) systems is developed. The conventional LQG based economic performance design provides an estimation which cannot be done by the controller while the proposed approach can develop the design performance achievable by the controller. Its optimal performance is achieved by solving economic performance design (EPD) problem and optimizing the MPC performance iteratively in contrast to the original EPD which has nonlinear LQG curve relationship. Based on the current operating data from MPC, EPD is transformed into a linear programming problem. With the iterative learning control (ILC) strategy, EPD is solved at each trial to update the tuning parameter and the designed condition; then MPC is conducted in the condition guided by EPD. The ILC strategy is proposed to adjust the tuning parameter based on the sensitivity analysis. The convergence of EPD by the proposed ILC has also been proved. The strategy can be applied to industry processes to keep enhancing the performance and to obtain the achievable optimal EPD. The performance of the proposed method is illustrated via an SISO numerical system as well as an MIMO industry process.  相似文献   

16.
This paper proposes a new adaptive nonlinear model predictive control (NMPC) methodology for a class of hybrid systems with mixed inputs. For this purpose, an online fuzzy identification approach is presented to recursively estimate an evolving Takagi–Sugeno (eTS) model for the hybrid systems based on a potential clustering scheme. A receding horizon adaptive NMPC is then devised on the basis of the online identified eTS fuzzy model. The nonlinear MPC optimization problem is solved by a genetic algorithm (GA). Diverse sets of test scenarios have been conducted to comparatively demonstrate the robust performance of the proposed adaptive NMPC methodology on the challenging start-up operation of a hybrid continuous stirred tank reactor (CSTR) benchmark problem.  相似文献   

17.
In model predictive control (MPC), the input sequence is computed, minimizing a usually quadratic cost function based on the predicted evolution of the system output. In the case of nonlinear MPC (NMPC), the use of nonlinear prediction models frequently leads to non‐convex optimization problems with several minimums. This paper proposes a new NMPC strategy based on second order Volterra series models where the original performance index is approximated by quadratic functions, which represent a lower bound of the original performance index. Convexity of the approximating quadratic cost functions can be achieved easily by a suitable choice of the weighting of the control increments in the performance index. The approximating cost functions can be globally minimized by convex optimization techniques in order to compute the input sequence. The minimization of the performance index is carried out by an iterative optimization procedure, which guarantees convergence to the solution. Furthermore, for a nominal prediction model, asymptotic stability for the proposed NMPC strategy can be shown. In the case of considering an estimation error in the prediction model, input‐to‐state practical stability is assured. The control performance of the NMPC strategy is illustrated by experimental results. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
In this paper, the problem of sampled‐data model predictive control (MPC) is investigated for linear networked control systems with both input delay and input saturation. The delay‐induced nonlinearity is overapproximatively modeled as a polytopic inclusion. The nonlinear behavior of input saturation is expressed as a convex polytope. The resulting closed‐loop systems are represented as linear systems with polytopic and additive norm‐bounded uncertainties. The aim is to determine a robust MPC controller that asymptotically stabilizes the uncertain system at the origin with a certain level of quadratic performance. The effectiveness of the proposed algorithm is demonstrated by a numerical example.  相似文献   

19.
Nonlinear model predictive control (NMPC) algorithms are based on various nonlinear models. A number of on-line optimization approaches for output-feedback NMPC based on various black-box models can be found in the literature. However, NMPC involving on-line optimization is computationally very demanding. On the other hand, an explicit solution to the NMPC problem would allow efficient on-line computations as well as verifiability of the implementation. This paper applies an approximate multi-parametric nonlinear programming approach to explicitly solve output-feedback NMPC problems for constrained nonlinear systems described by black-box models. In particular, neural network models are used and the optimal regulation problem is considered. A dual-mode control strategy is employed in order to achieve an offset-free closed-loop response in the presence of bounded disturbances and/or model errors. The approach is applied to design an explicit NMPC for regulation of a pH maintaining system. The verification of the NMPC controller performance is based on simulation experiments.  相似文献   

20.
李桂秋  陈志旺 《计算机应用》2012,32(6):1707-1712
为了使机械手系统在含有模型不确定项时具有良好的跟踪性能和较强的抗干扰能力,提出了一种间接自适应鲁棒预测控制。首先,针对机械手模型设计出非线性鲁棒预测控制器;然后,基于三次样条函数逼近控制律中因模型不确定性产生的未知项,并在控制律中引入一个D-控制项抑制外部干扰。理论证明了所设计的控制器能够使跟踪误差收敛到原点。仿真验证了所提方法的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号