首页 | 本学科首页   官方微博 | 高级检索  
检索     
共有20条相似文献,以下是第1-20项 搜索用时 421 毫秒

1.  基于动态多策略差分进化模型的MOEA/D算法*  
   林震《计算机应用研究》,2017年第34卷第9期
   在基于分解技术的多目标进化算法的框架中,引入一种动态多策略差分进化模型。该模型在分析不同差分进化策略的特点基础上,选择了三种差分进化策略,并对每种策略分配一子种群。在进化过程中,依据每种策略对邻域更新的贡献度,动态的调整其子种群的大小。对比分析采用不同差分进化算法的性能,结果表明运用多个策略之间相互协同进化,有利于提高算法性能。将新算法同NSG-II和MOEA/D算法在LZ09系列基准函数上进行性能对比,实验结果显示该算法的收敛性和多样性均优于对比算法。将新应用于I型梁多目标优化设计问题中,获得的Pareto前沿均匀,且解集域较宽广,对比分析表明算法的工程实用性。    

2.  基于差分进化粒子群算法的多目标无功优化  
   简献忠  李莹  范建鹏  柏勰文  杨延安《控制工程》,2015年第22卷第1期
   针对电力系统有功网损最小、电压水平最好和电压稳定裕度最大的多目标无功优化问题,提出一种基于差分进化的改进多目标粒子群优化算法。该算法通过对Pareto最优解集的差分进化来增加Pareto最优解的多样性,通过拥挤距离来控制精英集中非支配解的分布,以提高对种群空间的均匀采集;采用擂台赛法则构造多目标Pareto最优解集,较大程度的提高了算法的运行效率;自适应惯性权重和加速度因子的动态变化可增强算法的全局搜索能力。将该算法在IEEE14、IEEE30节点标准测试系统上进行了无功优化仿真,结果表明,基于差分进化的改进多目标粒子群优化算法能够在保持Pareto最优解的多样性的同时具有较好的收敛性能,为多目标无功优化提供了一种新的方法。    

3.  一种自适应多目标离散差分进化算法  被引次数:1
   张明明  赵曙光  王旭《计算机工程与应用》,2009年第45卷第26期
   提出一种自适应多目标离散差分进化算法。该算法将差分进化引入多目标优化领域,采用一种新的自适应离散差分进化策略增强算法的全局搜索能力,以获得更优的Pareto近似解,并结合Pareto快速分层排序策略和基于聚集密度的按层修剪操作对种群进行更新维护,使解集保持良好的多样性。实例测试和算法比较表明,该算法能有效求解离散域和连续域上不同类型的多目标优化问题,且在收敛性、分布性、稳定性方面均表现较好。    

4.  求解机械优化的Pareto多目标中心粒子群算法  
   桂旺生  刘利斌  欧阳艾嘉  周永权  李肯立《计算机工程与应用》,2011年第47卷第4期
   针对基于权重法的多目标算法无法求解约束多目标问题的缺陷,将中心粒子群算法与Pareto解集搜索算法相结合,提出一种Pareto多目标中心粒子群算法。将此方法用来优化气门弹簧的模型,实验结果表明,该优化方法能够快速准确地收敛于Pa-reto解集,并且使其对应的目标域均匀地分布于Pareto最优目标域。    

5.  基于Pareto熵的多目标粒子群优化算法  被引次数:3
   胡旺  Gary G. YEN  张鑫《软件学报》,2014年第25卷第5期
   粒子群优化算法因形式简洁、收敛快速和参数调节机制灵活等优点,同时一次运行可得到多个解,且能逼近非凸或不连续的Pareto最优前端,因而被认为是求解多目标优化问题最具潜力的方法之一.但当粒子群优化算法从单目标问题扩展到多目标问题时,Pareto最优解集的存储与维护、全局和个体最优解的选择以及开发与开采的平衡等问题亦随之出现.通过目标空间变换方法,采用Pareto前端在被称为平行格坐标系统的新目标空间中的分布熵及差熵评估种群的多样性及进化状态,并以此为反馈信息来设计进化策略,使得算法能够兼顾近似Pareto前端的收敛性和多样性.同时,引入格占优和格距离密度的概念来评估Pareto最优解的个体环境适应度,以此建立外部档案更新方法和全局最优解选择机制,最终形成了基于Pareto熵的多目标粒子群优化算法.实验结果表明:在IGD性能指标上,与另外8种对等算法相比,该算法在由ZDT和DTLZ系列组成的12个多目标测试问题集中表现出了显著的性能优势.    

6.  基于自适应学习的多目标粒子群优化算法  
       郭观七  李文彬  严太山《计算机应用研究》,2012年第29卷第9期
   将进化算法应用于某些多目标优化问题时,采用增加种群规模和进化代数的方法往往耗费大量的目标函数计算开销,且达不到提高种群进化效率的目的,为此提出了一种基于自适应学习最优搜索方向的多目标粒子群优化算法。采用自适应惯性权值平衡算法的全局和局部搜索能力,采用聚类排挤方法保持Pareto非支配解集的分布均匀性,使用最近邻学习方法为每个粒子在Pareto非支配解集中寻找一个最优飞行目标来提高其收敛速度并保持粒子群搜索方向的多样性。实验结果表明,提出的算法可在显著地降低函数评估成本的前提下实现快速的搜索,并使粒子群均匀地逼近Pareto最优面。    

7.  一种改进的多目标混合差分进化算法  
   王筱珍  俞国燕《计算机应用研究》,2014年第31卷第5期
   将差分进化算法(DE)用于多目标优化问题,提出了一种精英保留和进化进程中非支配解集迁移操作的差分进化算法,以保证所求得多目标优化问题Pareto最优解的多样性。采用双群体约束处理技术,构建进化群体的Pareto非支配解外部存档集,并进行基于非支配解集的迁移操作,以增加非支配解的数目和质量。用多个经典测试函数测试的结果表明,与标准DE相比,该方法收敛到问题的Pareto前沿效果良好,能有效保持Pareto最优解多样性与收敛之间的平衡。    

8.  基于混沌的多目标粒子群优化算法  被引次数:1
   钱伟懿  李阿军  杨宁宁《计算机工程与设计》,2008年第29卷第18期
   针对多目标优化问题,提出了一种改进的粒子群算法.该算法为了寻找新解,引入了混沌搜索技术,同时采用了一种新的方法--拥挤距离法定义解的适应度.并采取了精英保留策略,在提高非劣解集多样性的同时,使解集更加趋近于Pareto集.最后,把算法应用到4个典型的多目标测试函数.数值结果表明,该算法能够有效的收敛到Pareto非劣最优目标域,并沿着Pareto非劣目标域有很好的分散性.    

9.  基于模糊支配的高维多目标进化算法MFEA  
   毕晓君  张永建  陈春雨《电子学报》,2014年第42卷第8期
   为提高高维复杂多目标优化算法的收敛性和解集分布性,提出一种基于模糊支配的高维多目标进化算法MFEA.在第二代Pareto支配类高维多目标进化算法模型基础上,利用模糊理论对模型中的环境选择进行改进,提出基于模糊隶属度的支配关系,并结合Harmonic、k邻域法和小生境技术对其中的拥挤密度估计方法进行改进,最后根据高维多目标的特点并结合模糊理论α-截集的思想提出了新的环境选择策略.将该算法与目前性能最好的5种多目标进化算法在标准测试函数集上进行对比试验,结果表明本文算法与其他算法相比具有明显的优势,不仅提高了算法的收敛性能,而且保证了Pareto最优解的均匀分布性.    

10.  基于Pareto的快速多目标克隆选择算法*  
   李恒杰  郝晓弘  张磊《计算机应用研究》,2008年第25卷第5期
   基于免疫系统中克隆选择原理,提出了一种多目标克隆选择算法MCSA。该方法只对部分当前所得到的Pareto最优解进行进化操作,所求得的Pareto最优解保留在一个不断更新的外部记忆库中,并选用一种简单的多样性保存机制来保证其具有良好的分布特征。实验结果表明,该方法能够很快地收敛到Pareto最优前沿面,同时较好地保持解的多样性和分布的均匀性。对于公认的多目标benchmark问题,MCSA在解集分布的均匀性、多样性与解的精确性及算法收敛速度等方面均优于SPEA、NSGA-II等算法。    

11.  基于多种群差分进化的多目标优化算法  
   宋 通  庄 毅《计算机科学》,2012年第39卷第8期
   针对差分进化算法(Differential Evolution Algorithm,DE)求解多目标优化问题时易陷入局部最优的问题,设计了一种双向搜索机制,它通过对相反进化方向产生的两个子代个体进行评价,来增强DE算法的局部搜索能力;设计了多种群机制,它可令各子群独立进化一定次数再执行全局进化,以完成子群间进化信息的交流,这一方面降低了算法陷入局部最优的风险,另一方面增强了Pareto解集的多样性,使Pareto前沿面的解集分布更为均匀。实验结果表明,相比于NSGA-II等同类算法,所提方法在搜索Pareto最优解时效率更高,并且Pareto最优解集的精度及分布程度比前者更好。    

12.  新的混合智能优化算法及其多目标优化应用  
   张汉强  卢建刚  陈金水《计算机应用》,2010年第30卷第5期
   针对人工鱼群算法后期收敛速度较慢、解精度不高的不足,按照分阶段寻优和变参数寻优的改进策略,并结合禁忌搜索算法中的相关规则,提出一种新的混合智能优化算法。该算法将寻优过程分为锁定最优解或者局部解邻域和求得高精度最优解两个阶段,每个阶段设置不同的参数并结合禁忌搜索算法以提高收敛速度和最优解精度。典型函数验证表明,该算法收敛速度快、精度高;同时,对于多目标优化问题,该算法可以提高Pareto最优解集质量,扩大决策分布范围,维持决策多样性,有利于决策者作出决策。    

13.  一种基于Pareto排序的混合多目标进化算法  
   吴坤安  严宣辉  陈振兴《计算机工程与应用》,2015年第1期
   为了改进多目标进化算法的收敛性和解集的多样性,提出一种基于Pareto排序的混合多目标进化算法PHMOEA。在PHMOEA中使用干扰集刺激优化非支配集的构成,改善算法的收敛性和解集的分布性,并根据Pareto等级和精英保留策略改进了交叉算子和变异算子。该算法与著名的NSGA-II和SPEA2多目标进化算法在13个基准测试函数上的对比结果表明,PHMOEA算法不仅多样性较好,而且提高了算法的收敛性,并使获得的最优解集的分布性更均匀,覆盖范围更广。    

14.  基于自适应进化学习的约束多目标粒子群优化算法  
   王建林  吴佳欢  张超然  赵利强  于涛《控制与决策》,2014年第10期
   针对约束边界粒子在边界区域搜索能力不足的问题,提出一种基于自适应进化学习的约束多目标粒子群优化算法。该算法根据不符合约束条件粒子的约束违反程度,修正优化算法的进化学习公式,提高算法在约束边界区域的搜索能力;通过引入一种基于拥挤距离的Pareto最优解分布性动态维护策略,在不增加算法复杂度的前提下改进Pareto前沿的分布性。实验结果表明,所提出的算法可以获得具有更好收敛性、分布性和多样性的Pareto前沿。    

15.  知识引导的多目标多智能体进化算法  
   吴亚丽  薛芬《控制理论与应用》,2014年第31卷第8期
   将智能体模型与知识模型相结合,提出一种知识引导的多目标多智能体进化算法.算法定义了智能体的不同邻域环境,并通过对邻域之间的竞争、正交交叉、知识学习等操作实现种群的演化过程.算法采用一种新颖的方法求非劣解集,并使用循环拥挤排序法对外部归档集进行维护.通过对多个测试函数的仿真结果表明,知识的引入不仅增加了种群多样性,而且提高了算法的收敛性.    

16.  多目标差分进化在热连轧负荷分配中的应用  
   姚峰  杨卫东  张明《控制理论与应用》,2010年第27卷第7期
   提出一种基于差分进化算法的多目标进化算法, 该算法个体的选择是通过非支配排序和拥挤度距离进行综合考虑. 保证了算法收敛到Pareto最优解集的同时, 提高了最优解个体分布的多样性. 通过与非支配排序遗传算法Ⅱ(NSGA Ⅱ)算法进行仿真对比, 结果显示基于拥挤度排序的多目标差分进化算法在收敛性和Pareto最优解集分布的多样性上均优于NSGA Ⅱ算法. 最后将其引入到热连轧负荷分配优化计算中, 给出了目标函数的表达方式, 对多目标进化算法在热连轧负荷分配计算中的应用进行了研究.    

17.  关联变量分组的分解多目标进化算法研究  
   邱飞岳  胡烜  王丽萍《计算机科学》,2017年第44卷第12期
   含有大规模决策变量的优化问题是当前多目标进化算法领域中的研究热点和难点之一。在解决大规模变量问题时,目前的进化算法并没有寻找决策变量之间的关联信息,而都只是将所有变量视为一个整体来进行优化。但随着优化问题中决策变量的增多,“变量维度”成为瓶颈,从而影响算法的性能。针对上述问题,提出关联变量分组策略,通过识别决策变量间内在的关联信息把关联变量分配到同组中,将复杂高维变量的优化问题分解为简单低维的子问题来求解。该策略通过增加关联变量分配到同组中的概率来使算法尽可能地保留变量之间的关联性,减少分组后子问题间的依赖性,从而提高子问题最优解的质量并最终获得最佳的Pareto最优解集。将该算法在标准测试函数上进行变量扩展后再进行仿真对比实验,采用性能指标对算法的收敛性和多样性进行对比分析。实验结果表明,该算法在解决大规模变量的多目标优化问题中,随着决策变量维度的增加,比经典的多目标进化算法NSGA-II、MOEA/D以及RVEA具有更佳的收敛和更好的分布性能,所求得的Pareto解集质量更高。    

18.  基于人工免疫系统的多目标函数优化  
   李春华  朱新坚  曹广益  隋升《计算机工程与应用》,2008年第44卷第1期
   为克服传统遗传算法退化和早熟等缺点,同时降低优化算法的复杂度,提出基于人工免疫系统(Artificial Immune System,AIS)实现无约束多目标函数的优化。使用随机权重法和自适应权重法计算种群个体的适应值,使Pareto最优解均匀分布的同时,加快算法的收敛;通过引入人工免疫系统的三个基本算子:克隆、超变异和消亡,保持种群的多样性;在进化种群外设立Pareto解集,保存历代的近似最优解。使用了两个典型的多目标检测函数验证了该算法的有效性。优化结果表明,基于AIS的多目标优化算法可使进化种群迅速收敛到Pareto前沿,并能均匀分布,是实现多目标函数优化的有效方法。    

19.  基于拥挤距离排序的多目标粒子群优化算法及其应用  被引次数:5
   李中凯  谭建荣  冯毅雄  方辉《计算机集成制造系统》,2008年第14卷第7期
   针对多目标粒子群算法在全局寻优能力和Pareto集多样性上的不足,提出基于拥挤距离排序的多目标粒子群算法.该算法采用精英策略,基于个体拥挤距离降序排列,进行外部种群的缩减和全局最优值的更新,并在内部粒子群中引入小概率变异机制,增强算法的全局寻优能力,控制Pareto最优解的数目,同时保证其收敛性和多样性特征.在电梯曳引性能的多目标优化应用中,证明了该算法对于两目标和三目标优化问题求解的有效性.不同规模实例的运算对比表明,该算法在Pareto前沿的收敛性和多样性方面均优于改进强度Pareto进化算法,且缩短了运算时间,具有较高的效率与鲁棒性.    

20.  基于粒子记忆体的多目标微粒群算法*  被引次数:1
   章国安  周超  周晖《计算机应用研究》,2010年第27卷第5期
   针对多目标微粒群算法(MOPSO)解的多样性分布问题,提出一种基于粒子记忆体的多目标微粒群算法(dp-MOPSO)。dp-MOPSO算法为每个微粒分配一个记忆体,保存寻优过程中搜索到的非支配pbest集,以避免搜索信息的丢失。采用外部存档保存种群搜索到的所有Pareto解,并引入动态邻域的策略从外部存档中选择全局最优解。利用几个典型的多目标测试函数对dp-MOPSO算法的性能进行测试,并与两种著名的多目标进化算法m-DNPSO、SPEA2进行比较。实验结果表明,dp-MOPSO算法可以更好地逼近真实Pareto沿,同时所得Pareto解分布更均匀。    

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号