共查询到10条相似文献,搜索用时 31 毫秒
1.
Chen YN Han CC Wang CT Fan KC 《IEEE transactions on pattern analysis and machine intelligence》2011,33(6):1073-1086
Face recognition algorithms often have to solve problems such as facial pose, illumination, and expression (PIE). To reduce the impacts, many researchers have been trying to find the best discriminant transformation in eigenspaces, either linear or nonlinear, to obtain better recognition results. Various researchers have also designed novel matching algorithms to reduce the PIE effects. In this study, a nearest feature space embedding (called NFS embedding) algorithm is proposed for face recognition. The distance between a point and the nearest feature line (NFL) or the NFS is embedded in the transformation through the discriminant analysis. Three factors, including class separability, neighborhood structure preservation, and NFS measurement, were considered to find the most effective and discriminating transformation in eigenspaces. The proposed method was evaluated by several benchmark databases and compared with several state-of-the-art algorithms. According to the compared results, the proposed method outperformed the other algorithms. 相似文献
2.
Banitalebi-Dehkordi Mehdi Banitalebi-Dehkordi Amin Abouei Jamshid Plataniotis Konstantinos N. 《Multimedia Tools and Applications》2018,77(11):14007-14027
Multimedia Tools and Applications - This paper proposes a novel face recognition algorithm that utilizes a sparse Fast Fourier Transform (FFT)-based feature extraction method. In our algorithm, we... 相似文献
3.
Face recognition using line edge map 总被引:17,自引:0,他引:17
Yongsheng Gao Leung M.K.H. 《IEEE transactions on pattern analysis and machine intelligence》2002,24(6):764-779
The automatic recognition of human faces presents a significant challenge to the pattern recognition research community. Typically, human faces are very similar in structure with minor differences from person to person. They are actually within one class of "human face". Furthermore, lighting conditions change, while facial expressions and pose variations further complicate the face recognition task as one of the difficult problems in pattern analysis. This paper proposes a novel concept: namely, that faces can be recognized using a line edge map (LEM). The LEM, a compact face feature, is generated for face coding and recognition. A thorough investigation of the proposed concept is conducted which covers all aspects of human face recognition, i.e. face recognition under (1) controlled/ideal conditions and size variations, (2) varying lighting conditions, (3) varying facial expressions, and (4) varying pose. The system performance is also compared with the eigenface method, one of the best face recognition techniques, and with reported experimental results of other methods. A face pre-filtering technique is proposed to speed up the search process. It is a very encouraging to find that the proposed face recognition technique has performed better than the eigenface method in most of the comparison experiments. This research demonstrates that the LEM, together with the proposed generic line-segment Hausdorff distance measure, provides a new method for face coding and recognition 相似文献
4.
5.
The well-known eigenface method uses an eigenface set obtained from principal component analysis. However, the single eigenface set is not enough to represent the complicated face images with large variations of poses and/or illuminations. To overcome this weakness, we propose a second-order mixture-of-eigenfaces method that combines the second-order eigenface method (ISO MPG m5750, Noordwijkerhout, March 2000) and the mixture-of-eigenfaces method (a.k.a. Gaussian mixture model (Proceedings IJCNN2001, 2001). In this method, we use a couple of mixtures of multiple eigenface sets: one is a mixture of multiple approximate eigenface sets for face images and another is a mixture of multiple residual eigenface sets for residual face images. Each mixture of multiple eigenface sets has been obtained from expectation maximization learning consecutively. Based on two mixture of multiple eigenface sets, each face image is represented by a couple of feature vectors obtained by projecting the face image onto a selected approximate eigenface set and then by projecting the residual face image onto a selected residual eigenface set. Recognition is performed by the distance in the feature space between the input image and the template image stored in the face database. Simulation results show that the proposed second-order mixture-of-eigenfaces method is best for face images with illumination variations and the mixture-of-eigenfaces method is best for the face images with pose variations in terms of average of the normalized modified retrieval rank and false identification rate. 相似文献
6.
Performance evaluation of the nearest feature line method in image classification and retrieval 总被引:6,自引:0,他引:6
Li S.Z. Kap Luk Chan Changliang Wang 《IEEE transactions on pattern analysis and machine intelligence》2000,22(11):1335-1339
A method, the nearest feature line (NFL) method, is used in image classification and retrieval and its performance is evaluated and compared with other methods by extensive experiments. The NFL method is demonstrated to make efficient use of knowledge about multiple prototypes of a class to represent that class. 相似文献
7.
In this paper, we propose a face recognition method called the commonface by using the common vector approach. A face image is regarded as a summation of a common vector which represents the invariant properties of the corresponding face class, and a difference vector which presents the specific properties of the corresponding face image such as face appearance, pose and expression. Thus, by deriving the common vector of each face class, the common feature of each person is obtained which removes the differences of face images belonging to the same person. For test face image, the remaining vector with each face class is derived with the similar procedure to the common vector, which is then compared with the common vector of each face class to predict the class label of query face by finding the minimum distance between the remaining vector and the common vector. Furthermore, we extend the common vector approach (CVP) to kernel CVP to improve the performance of CVP. The experimental results suggest that the proposed commonface approach provides a better representation of individual common feature and achieves lower error rates in face recognition. 相似文献
8.
Mauricio Orozco-Alzate César Germán Castellanos-Domínguez 《Machine Vision and Applications》2006,17(5):279-285
This paper presents an experimental comparison of the nearest feature classifiers, using an approach based on binomial tests in order to evaluate their strengths and weaknesses. In addition, classification accuracies and the accuracy-dimensionality tradeoff have been considered as comparison criteria. We extend two of the nearest feature classifiers to label the query point by a majority vote of the samples. Comparisons were carried out for face recognition using ORL database. We apply the eigenface representation for feature extraction. Experimental results showed that even though the classification accuracy of k-NFP outperforms k-NFL in some dimensions, these rate differences do not have statistical significance. 相似文献
9.
Hao Du 《Pattern recognition》2007,40(5):1486-1497
This paper points out and analyzes the advantages and drawbacks of the nearest feature line (NFL) classifier. To overcome the shortcomings, a new feature subspace with two simple and effective improvements is built to represent each class. The proposed method, termed rectified nearest feature line segment (RNFLS), is shown to possess a novel property of concentration as a result of the added line segments (features), which significantly enhances the classification ability. Another remarkable merit is that RNFLS is applicable to complex tasks such as the two-spiral distribution, which the original NFL cannot deal with properly. Finally, experimental comparisons with NFL, NN(nearest neighbor), k-NN and NNL (nearest neighbor line) using both artificial and real-world data-sets demonstrate that RNFLS offers the best performance. 相似文献
10.
On the use of nearest feature line for speaker identification 总被引:5,自引:0,他引:5
As a new pattern classification method, nearest feature line (NFL) provides an effective way to tackle the sort of pattern recognition problems where only limited data are available for training. In this paper, we explore the use of NFL for speaker identification in terms of limited data and examine how the NFL performs in such a vexing problem of various mismatches between training and test. In order to speed up NFL in decision-making, we propose an alternative method for similarity measure. We have applied the improved NFL to speaker identification of different operating modes. Its text-dependent performance is better than the dynamic time warping (DTW) on the Ti46 corpus, while its computational load is much lower than that of DTW. Moreover, we propose an utterance partitioning strategy used in the NFL for better performance. For the text-independent mode, we employ the NFL to be a new similarity measure in vector quantization (VQ), which causes the VQ to perform better on the KING corpus. Some computational issues on the NFL are also discussed in this paper. 相似文献