首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 171 毫秒
1.
双足机器人的双脚支撑期是实现其步行运动的重要过程,然而耦合的位置/力控制难以保证其稳定平滑运动.本文提出了一种基于降阶位置/力模型的机器人控制策略,整合了位置控制子空间模型和力控制子空间模型,通过模型降阶减小了控制器设计的复杂度,并采用神经网络自适应控制方法综合多控制目标,实现了双足机器人的平滑稳定控制并有效地抑制了系统外扰和参数不确定性的影响.最后,仿真算法验证了该控制方法和模型的有效性.  相似文献   

2.
In this article, motion/force control problem of a class of constrained mobile manipulators with unknown dynamics is considered. The system is subject to both holonomic and nonholonomic constraints. An adaptive recurrent neural network controller is proposed to deal with the unmodelled system dynamics. The proposed control strategy guarantees that the system motion asymptotically converges to the desired manifold while the constraint force remains bounded. In addition, an adaptive method is proposed to identify the contact surface. Simulation studies are carried out to verify the validation of the proposed approach.  相似文献   

3.
The control of two manipulators handling a constrained object involves the control of the position of the object, the internal force used to grasp the object, and the constraint force due to the constraint surface. The robustness of the controller must be guaranteed when the system faces parameter uncertainties and or external disturbances. In this paper, a variable structure control law is proposed. This controller guarantees the asymptotic convergence of the position of the object, internal force, and constraint force to their desired values when uncertainties on the parameters and external disturbances are present in the system. Simulation results for two planar robots moving an object along a horizontal plane illustrate the fact that the proposed controller achieves the desired asymptotic tracking.  相似文献   

4.
We study the hybrid tracking problem for a class of mechanical systems, described by Euler-Lagrange equations of motion, subject to a set of holonomic and/or nonholonomic constraints in a unified fashion. Based on a QR-like decomposition of the constraint Jacobian, it is shown that the constraint-force free and reduced constrained motions of constrained mechanical systems can be naturally separated. A new hybrid control is proposed for the decomposed motions to achieve simultaneous, independent position and force tracking. Some comments about the applicability of main tracking result are given.  相似文献   

5.
Chian-Song  Kuang-Yow  Tsu-Cheng 《Automatica》2004,40(12):2111-2119
In the presence of uncertain constraint and robot model, an adaptive controller with robust motion/force tracking performance for constrained robot manipulators is proposed. First, robust motion and force tracking is considered, where a performance criterion containing disturbance and estimated parameter attenuations is presented. Then the proposed controller utilizes an adaptive scheme and an auxiliary control law to deal with the uncertain environmental constraint, disturbances, and robotic modeling uncertainties. After solving a simple linear matrix inequality for gain conditions, the effect from disturbance and estimated parameter errors to motion/force errors is attenuated to an arbitrary prescribed level. Moreover, if the disturbance and estimated parameter errors are square-integrable, then an asymptotic motion tracking is achieved while the force error is as small as the inversion of control gain. Finally, numerical simulation results for a constrained planar robot illustrate the expected performance.  相似文献   

6.
How to Control Robots Interacting with Dynamic Environment   总被引:7,自引:0,他引:7  
The goal of this paper is to shed light on the control problem of constrained robot motion from the aspect of the dynamical nature of the environment with which the robot is in contact. Therefore, the criticism of traditional hybrid control which allows position/force feedback loops to split into independent control with respect to position and force, is not the main point we want to make. Reference to the papers written by the founders of hybrid control and their numerous followers served only to better understand the reason and motivation for suggesting a different approach to control of robots interacting with environment.The paper has a predominantly review character, based on recently published work. It also contains some new, unpublished results in the framework of the unified approach to the position/force control of robots, proposed by the present author and his co-workers. By pointing to the possibility of introducing an environment dynamics in the contact tasks of the machining type, the author emphasizes that the proposed dynamically interactive control can be applied to a completely different class of tasks, in which a contact is made between the system (constructions or structure) and very specific kinds of dynamic environments.  相似文献   

7.
Adaptive control of redundant multiple robots in cooperative motion   总被引:1,自引:0,他引:1  
A redundant robot has more degrees of freedom than what is needed to uniquely position the robot end-effector. In practical applications the extra degrees of freedom increase the orientation and reach of the robot. Also the load carrying capacity of a single robot can be increased by cooperative manipulation of the load by two or more robots. In this paper, we develop an adaptive control scheme for kinematically redundant multiple robots in cooperative motion.In a usual robotic task, only the end-effector position trajectory is specified. The joint position trajectory will therefore be unknown for a redundant multi-robot system and it must be selected from a self-motion manifold for a specified end-effector or load motion. In this paper, it is shown that the adaptive control of cooperative multiple redundant robots can be addressed as a reference velocity tracking problem in the joint space. A stable adaptive velocity control law is derived. This controller ensures the bounded estimation of the unknown dynamic parameters of the robots and the load, the exponential convergence to zero of the velocity tracking errors, and the boundedness of the internal forces. The individual robot joint motions are shown to be stable by decomposing the joint coordinates into two variables, one which is homeomorphic to the load coordinates, the other to the coordinates of the self-motion manifold. The dynamics on the self-motion manifold are directly shown to be related to the concept of zero-dynamics. It is shown that if the reference joint trajectory is selected to optimize a certain type of objective functions, then stable dynamics on the self-motion manifold result. The overall stability of the joint positions is established from the stability of two cascaded dynamic systems involving the two decomposed coordinates.  相似文献   

8.
A principle of ‘joint-space orthogonalization’ is proposed as an extended notion of hybrid (force and position) control for robot manipulators under geometric constraints. The principle realizes the hybrid control in a strict sense by letting position feedback signals be orthogonal in joint space to the contact force vector whose components exert at corresponding joints. This orthogonalization is executed via a projection matrix computed in real-time from a Jacobian matrix of the constraint equation in joint coordinates. To show the important role of the principle in control of robot manipulators, two basic set-point control problems are analysed. One is a hybrid PID control problem for robot manipulators under geometric endpoint constraint and another is a coordinated control problem of two arms. It is shown that passivity properties of residual dynamics of robots follow from the introduction of a quasi-natural potential and the joint-space orthogonalization. Various stability problems of PID-type feedback control schemes without compensating for the gravity force and with or without use of a force sensor are discussed from passivity properties of robot dynamics with the aid of the hyper-stability theory.  相似文献   

9.
In this paper, we design an adaptive position/force controller for robot manipulators during constrained motion. The proposed controller can compensate for parametric uncertainty while only requiring measurements of link position and end-effector force. A filtering technique is utilized to produce a pseudo-velocity error signal and thus, eliminate the need for link velocity measurements. The control strategy provides semiglobal asymptotic tracking performance for the end-effector position and the interaction force between the constraint and the end-effector. An experimental implementation of the proposed controller on a two-link planar robot is also presented.  相似文献   

10.
The paper deals with controlled mechanical systems in which the number of control inputs is equal to the number of desired system outputs, and is smaller than the number of degrees of freedom of the system. The determination of control input strategy that force the underactuated system to complete the partly specified motion is a challenging problem. In the present formulation, the outputs (performance goals), expressed in terms of system states, are treated as constraints on the system—called control or program constraints as distinct from contact constraints in the classical sense, and a mathematical resemblance of the inverse control problem to the constrained system dynamics is exploited. However, while the reactions of contact constraints act in the directions orthogonal to the respective constraint manifold, the available control reactions may have arbitrary directions with respect to the program constraint manifold, and in the extreme may be tangent. A specific methodology must then be developed to find the solution of such singular problems, related to a class of control tracking problems such as position control of elastic joint robots, control of cranes, and aircraft control in prescribed trajectory flight. The governing equations of the problem arise as a set of differential-algebraic equations (DAEs), and an effective method for solving the DAEs, based on backward Euler method, is proposed. The open-loop control formulation obtained this way is then extended by a closed-loop control law to provide stable tracking of the required reference trajectories in the presence of perturbations. Some examples of applications of the theory and results of numerical simulations are reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号