共查询到20条相似文献,搜索用时 62 毫秒
1.
支持向量机(support vector machine,SVM)是在统计学习理论基础上发展起来的一种新的数据挖掘方法,并已广泛应用于模式识别与回归分析等领域.并且传统的支持向量机由于噪音教据的存在而易出现过学习现象,因而有必要消除噪音的影响.基于以上考虑,提出了一种模糊支持向量机模型.本论文主要针对该类型的模糊支持向量机进行研究. 相似文献
2.
3.
基于模糊支持向量机的产品设计时间预测 总被引:1,自引:0,他引:1
针对产品设计时间预测中存在的小样本、不确定性数据和异方差噪音等问题,将模糊回归理论与par--SVM相结合,基于Necessity模型构造约束条件,提出了par-F-SVM,并给出了相应的设计活动时间智能预测方法和相关参数的优选算法.最后通过注塑模具设计的实例分析表明了所提出的基于par-F-SVM的时间预测方法是有效、可行的. 相似文献
4.
支持向量机算法对噪声和异常点是敏感的,为了克服这个问题,人们引入了模糊隶属度。传统确定样本模糊隶属度的方法,都是基于原始空间的。文章提出了基于特征空间的模糊隶属度函数模型。在该模型中,以特征空间中的样本为中心,以给定的距离d为半径作超球,根据其它样本落到超球内的个数来确定中心样本点的模糊隶属度。并将新的模糊隶属度模型引入自适应支持向量机,提出了模糊自适应支持向量机算法。实验结果表明,该模型能有效地提高自适应支持向量机的抗噪能力和预测精度。 相似文献
5.
为克服维数灾难和过拟合等传统算法所不可规避的问题,利用支持向量机(Support Vector Machine,SVM)提出基于时序数据时间相关性的核函数修正选择方法,并以真实的二氧化硫(SO2)数据为实验数据验证该方法的有效性.实验结果表明采用时序核函数对测试数据集的拟合效果更好,并对模型泛化能力有一定的提高. 相似文献
6.
一个有效的核方法通常取决于选择一个合适的核函数。目前研究核方法的热点是从数据中自动地进行核学习。提出基于最优分类标准的核学习方法,这个标准类似于线性鉴别分析和核Fisher判别式。并把此算法应用于模糊支持向量机多类分类器设计上,在ORL人脸数据集和Iris数据集上的实验验证了该算法的可行性。 相似文献
7.
基于模糊支持向量机的步态识别 总被引:2,自引:0,他引:2
提出基于模糊支持向量机(FSVM)的步态识别方法,以人体步态的宽度向量作为特征,探讨直接取值法和模糊C均值2种模糊隶属度确定方法对FSVM步态分类效果的影响。实验结果表明,模糊C均值法的识别率均略好于SVM,直接取值法的识别率甚至低于SVM,因此,选取正确的模糊隶属度确定方法是FSVM能否成功应用于步态识别的关键。 相似文献
8.
基于模糊聚类支持向量机的高速公路事件检测 总被引:1,自引:0,他引:1
高速公路自动事件检测(AID)系统作为智能交通系统(ITS)的重要组成部分,通过及时发现高速公路上发生的事故隐患,尽量减少事故发生的不利影响,可以有效地减少交通延误,保障道路安全,减少环境污染。文章采用一种强有力的分类工具—支持向量机(SVM)来进行高速公路事件检测,针对数据集在支持向量机中所起作用的不同以及可能存在噪声及孤立点的情况,采用了一种改进的模糊C均值聚类方法对训练样本进行预处理,大大地减少了训练样本数量,提高了支持向量机的训练速度,并且具有很好的鲁棒性。仿真实验的结果表明了该方法的可行性和有效性。 相似文献
9.
为了提高花粉浓度预报的准确率,解决现有花粉浓度预报准确率不高的问题,提出了一种基于粒子群优化(PSO)算法和支持向量机(SVM)的花粉浓度预报模型。首先,综合考虑气温、气温日较差、相对湿度、降水量、风力、日照时数等多种气象要素,选择与花粉浓度相关性较强的气象要素构成特征向量;其次,利用特征向量与花粉浓度数据建立SVM预测模型,并使用PSO算法找出最优参数;然后利用最优参数优化花粉浓度预测模型;最后,使用优化后的模型对花粉未来24 h浓度进行预测,并与未优化的SVM、多元线性回归法(MLR)、反向神经网络(BPNN)作对比。此外使用优化后的模型对某市南郊观象台和密云两个站点进行逐日花粉浓度预测。实验结果表明,相比其他预报方法,所提方法能有效提高花粉浓度未来24 h预测精度,并具有较高的泛化能力。 相似文献
10.
11.
12.
利用Oracle数据库中的数据挖掘选件(Oracle Data Mining,ODM),并使用存储在Oracle数据库中的时间序列数据,可构建预测时间序列未来值的支持向量机(Support Vector Machines,SVM)模型。建模时,需去除时间序列中的趋势,将目标属性标准化,确定包含延迟变量窗口的尺寸,利用机器学习方法,由时间序列历史数据得出SVM预测模型。与传统时间序列预测模型相比,SVM预测模型能够揭示时间序列的非线性、非平稳性和随机性,从而得到较高的预测精度。 相似文献
13.
14.
15.
混沌时间序列预测模型参数同步优化 总被引:1,自引:0,他引:1
传统上相空间重构与预测模型参数优化分开优化,割裂两者的联系,模型预测性能难以达到最优。利用相空间重构和预测模型参数的互相关系,提出一种混沌时间序列预测模型参数同步优化方法。首先采用均匀设计方法对影响模型预测精度的参数进行均匀设计,然后采用自调用最小二乘支持向量机进行参数同步优化,得到最优参数。以经典混沌时间序列太阳黑子年平均数为例进行了验证,结果表明,相对传统的参数优化算法,参数同步优化算法时间复杂度低、预测精度高,为混沌时间序列预测模型参数优化提供了一种新的思路。 相似文献
16.
在支持向量机( SVM)预测问题中,为了减小错误参数选取对预测结果的影响,提出了1种基于双重预测模型的非线性时间序列预测算法.该算法在充分考虑支持向量机参数对推广能力影响的基础上,分别利用自回归预测模型(AR)、自回归滑动平均模型( ARMA)、线性回归和决策树模型对SVM参数进行预测,将预测参数运用到SVM预测模型中... 相似文献
17.
一种新颖隶属度函数的模糊支持向量机 总被引:1,自引:0,他引:1
传统的支持向量机(SVM)训练含有外部点或噪音数据时,容易产生过拟合(over-fitting)。通过模糊隶属度函数来降低外部点或被污染数据的选择。本文提出了一种新的核隶属度函数,这种新的隶属度函数不仅依赖于每个样本点到类型中心的距离,还依赖于该样本点最邻近的K个其他样本点的距离。实验结果表明了具有该隶属度函数的模糊支持向量机的有效性。 相似文献
18.
支持向量机是一种基于统计学习理论的新的机器学习方法,该方法已用于解决模式分类问题.本文将支持向量机(SVM)用于混沌时间序列分析,实验数据采用典型地Mackey-Glass混沌时间序列,先对混沌时间序列进行支持向量回归实验;然后采用局域法多步预报模型,利用支持向量机对混沌时间序列进行预测.仿真实验表明,利用支持向量机可以较准确地预测混沌时间序列的变化趋势. 相似文献
19.
提出一种基于独立成分分析(ICA)的最小二乘支持向量机(LS-SVM),用于时间序列的多步超前独立预测.用ICA估计预测变量中的独立成分(IC),用不含噪声的IC重新构建时间序列.利用 -最近邻法( -NN)减小训练集的规模,提出一种新的距离函数以降低LS-SVM训练过程的计算复杂度,并用约束条件对预测值进行后处理.使用基于ICA的LS-SVM、普通LS-SVM与反向传播神经网络(BP-ANN),对多个时间序列进行对比预测实验.实验结果表明,基于ICA的LS-SVM的预测性能优于普通LS-SVM和BP-ANN. 相似文献