首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
基于情感与环境认知的移动机器人自主导航控制   总被引:2,自引:0,他引:2  
将基于情感和认知的学习与决策模型引入到基于行为的移动机器人控制体系中, 设计了一种新的自主导航控制系统. 将动力学系统方法用于基本行为设计, 并利用ART2神经网络实现对连续的环境感知状态的分类, 将分类结果作为学习与决策算法中的环境认知状态. 通过在线情感和环境认知学习, 形成合理的行为协调机制. 仿真表明, 情感和环境认知能明显地改善学习和决策过程效率, 提高基于行为的移动机器人在未知环境中的自主导航能力  相似文献   

2.
刘丽  李君 《计算机仿真》2011,28(9):242-245
研究移动机器人优化导航问题,由于系统在动态未知、复杂环境下,研究自主移动机器人导航问题,首先将行为优先级控制与模糊逻辑控制相结合提出了四种基本的行为控制方案:目标查找、避障碍物、目标跟踪与解锁,并采用模糊控制器来实现.然后针对’U’型和’V’型障碍物运行解锁问题,提出了行走路径记忆方法,通过构建虚拟墙来进免机器人再次走...  相似文献   

3.
针对未知环境下移动机器人路径规划和提高自主导航安全性问题,基于行为的控制结构思想,在此基础上提出了一种基于模糊控制的移动机器人路径规划算法;根据传感器接收的障碍物和目标距离方位信息,将路径规划分成避障行为、趋向目标行为;结合模糊逻辑理论和人类驾驶经验,制定模糊规则,输出转角和速度;仿真结果表明,移动机器人能够克服环境中的不确定性,有效地实现良好的路径规划,验证了模糊控制算法的可行性,体现了该路径规划策略的有效性和正确性。  相似文献   

4.
导航和避障是移动机器人自主智能中一项基础且重要的任务,其目的是引导机器人到达相应的位置。随着移动机器人的广泛使用,移动机器人常需要在大量移动障碍物的环境中导航和避障。提出了一种基于深度强化学习的导航避障算法,通过基于残差卷积和注意力机制的深度Q网络与势能奖励函数相结合,提高了在密集动态环境中导航避障的性能。仿真实验证明,当环境中动态障碍物密度大于0.4 ppm时,导航成功率大于60%。  相似文献   

5.
由于动态未知环境下自主移动机器人的导航具有较大困难,为实现自主机器人在动态未知环境下的无碰撞运行,文中将行为优先级控制与模糊逻辑控制相结合,提出4种基本行为控制策略:目标寻找、避障、跟踪和解锁.针对'U'型和'V'型障碍物运行解锁问题,提出了行走路径记忆方法,并通过构建虚拟墙来避免机器人再次走入此类区域.仿真实验表明,所提出的控制策略可有效地运用于复杂和未知环境下自主移动机器人的导航,且具有较好的鲁棒性和适应性.  相似文献   

6.
利用机器人行为动力学与滚动窗口路径规划   总被引:2,自引:0,他引:2       下载免费PDF全文
针对存在静态障碍物的未知环境下移动机器人路径规划问题,提出运用行为动力学与滚动窗口相结合进行路径规划的方法。首先根据所获得的窗口(局部环境)信息,采用启发式函数进行局部子目标优化选择;然后将路径规划问题即导航行为分解为趋于目标行为和避障行为,并对这两种行为分别建立了行为状态和行为模式动力学模型;在此基础上,以窗口为单位,利用导航行为动力学模型进行在线自主路径规划;将一系列窗口中的规划轨迹按照连续性条件首尾相接,最终完成了一条全局规划任务。该方法原理简单,计算量小,规划路径光滑,具有较强的实际应用价值。通过计算机实例仿真验证了该方法的有效性和适应性。  相似文献   

7.
研究了移动机器人对运动障碍物的动态避碰.针对以往速度障碍法在动态避碰应用中存在的问题,制 订了相应的改进方法.综合考虑障碍物速度的动态变化和碰撞时间、碰撞距离,在速度变化空间中,基于避碰行为 动力学原理,设计了新的优化评价函数,采用双障碍物检测窗口进行动态避碰规划.仿真实验表明,该方法有效地 克服了避碰规划的保守性,提高了机器人运动的安全性,并能实现对运动目标的及时追踪.  相似文献   

8.
针对未知环境中移动机器人的自主导航问题,提出了一种基于人机交互的反应式导航方法。在采用模糊逻辑实现机器人基本智能行为的基础上,利用基于优先级和有限状态机的混合行为协调方法建立"环境刺激-反应"机制,提高机器人的局部自主能力。提出将"人刺激-反应"机制引入机器人系统,提高机器人系统对环境的理解与决策能力。在不同环境模型中利用提出的方法对移向指定目标的机器人自主导航进行了仿真,仿真结果验证了该方法的有效性。  相似文献   

9.
根据移动机器人的导航任务,提出基于粒子群优化(PSO)算法的行为参数多目标分层优化方法。将导航方向与导航速度相关的参数按优先级进行PSO算法分层选取,使机器人在路径近似最优的基础上实现导航时间最少。仿真结果表明,该方法可以提高导航效率,实现导航决策的逐步求精,从而改善机器人在未知环境下的自主导航性能。  相似文献   

10.
对于移动机器人单目视觉避障导航问题,研究了室内环境中多障碍物目标图像分割与目标定位。提出一种将HSI彩色图像空间序列分割与Otsu法选取阈值相结合的图像分割方法,并采用基于亮度均值的幂次变换方法改进亮度空间的对比度,从背景环境中分割提取出多个目标所在区域的像素坐标。基于透视投影原理,应用目标定位的几何方法得到目标的空间坐标。该方法在Pioneer-2移动机器人平台上进行了实验,论证了所提出方法的实用性和有效性。  相似文献   

11.
在动态环境下的局部避障是移动机器人的一项基本功能.在各种速度空间方法,如曲率-速率法(CVM)、巷道-曲率法(LCM)和扇区-曲率法(BCM)的基础上,提出了一种适用于未知或部分未知动态环境的局部避障方法.该方法将碰撞预测模型与改进后的BCM有效结合,不仅兼备了CVM的平滑性、LCM的安全性和BCM快速性的优点,而且弥补了各种速度空间寻优方法的不足,使其能够适用于移动机器人在动态环境下的避障与导航.实际机器人的导航实验表明该算法是可行而有效的.  相似文献   

12.
Because the range of mobile robot sensors is limited and navigation maps are not always accurate, autonomous navigation in dynamic and unknown environments is a big challenge. In this article, we propose two novel autonomous navigation algorithms, which are based on the analysis of three conditions for unobserved and uncertain environments during navigation.

The algorithm for a dynamic environment uses the “known space” and “free space” conditions. It corrects false obstacles in the map when the conventional path is stuck. The navigation algorithm for unknown environments uses the “unknown space” and “free space” conditions. We use the Monte Carlo method to evaluate the performance of our algorithms and the other methods. Experimental results show that our autonomous navigation algorithms are better than the others.  相似文献   


13.
Developing an autonomous mobile robot capable of navigation, surveillance and manipulation in complex and dynamic environments is a key research activity at CESAR, Oak Ridge National Laboratory's Center for Engineering Systems Advanced Research. The latest series of completed experiments was performed using the autonomous mobile robot HERMIES-IIB (Hostile Environment Robotic Intelligence Experiment Series II-B).  相似文献   

14.
This paper deals with the real-time path planning of an autonomous mobile robot in two-dimensional, unknown, dynamic multiple robot navigation space. In particular, a collision-free navigation path planning strategy is presented in real time by using a heuristichuman like approach. The heuristic scheme used here is based on thetrial and error methodology with the attempt to minimize the cost of the navigation efforts, when time plays a significant role. Past built-up navigation experience and current extracted information from the surrounding environment are used for the detection of other moving objects (robots) in the same navigation environment. Moreover, the determination of asecure navigation path is supported by a set of generic traffic priority rules followed by the autonomous robots moving in the same environment. Simulated results for two moving objects in the same navigation space are also presented.  相似文献   

15.
《Advanced Robotics》2013,27(5):463-478
This paper describes the theory and an experiment of a velocity potential approach to path planning and avoiding moving obstacles for an autonomous mobile robot by use of the Laplace potential. This new navigation function for path planning is feasible for guiding a mobile robot avoiding arbitrarily moving obstacles and reaching the goal in real time. The essential feature of the navigation function comes from the introduction of fluid flow dynamics into the path planning. The experiment is conducted to verify the effectiveness of the navigation function for obstacle avoidance in a real world. Two examples of the experiment are presented; first, the avoidance of a moving obstacle in parallel line-bounded space, and second, the avoidance of one moving obstacle and another standing obstacle. The robot can reach the goal after successfully avoiding the obstacles in these cases.  相似文献   

16.
自主导航是移动机器人的一项关键技术。该文采用强化学习结合模糊逻辑的方法实现了未知环境下自主式移动机机器人的导航控制。文中首先介绍了强化学习原理,然后设计了一种未知环境下机器人导航框架。该框架由避碰模块、寻找目标模块和行为选择模块组成。针对该框架,提出了一种基于强化学习和模糊逻辑的学习、规划算法:在对避碰和寻找目标行为进行独立学习后,利用超声波传感器得到的环境信息进行行为选择,使机器人在成功避碰的同时到达目标点。最后通过大量的仿真实验,证明了算法的有效性。  相似文献   

17.
A reactive navigation system for an autonomous mobile robot in unstructured dynamic environments is presented. The motion of moving obstacles is estimated for robot motion planning and obstacle avoidance. A multisensor-based obstacle predictor is utilized to obtain obstacle-motion information. Sensory data from a CCD camera and multiple ultrasonic range finders are combined to predict obstacle positions at the next sampling instant. A neural network, which is trained off-line, provides the desired prediction on-line in real time. The predicted obstacle configuration is employed by the proposed virtual force based navigation method to prevent collision with moving obstacles. Simulation results are presented to verify the effectiveness of the proposed navigation system in an environment with multiple mobile robots or moving objects. This system was implemented and tested on an experimental mobile robot at our laboratory. Navigation results in real environment are presented and analyzed.  相似文献   

18.
For the last decade, we have been developing a vision-based architecture for mobile robot navigation. Using our bio-inspired model of navigation, robots can perform sensory-motor tasks in real time in unknown indoor as well as outdoor environments. We address here the problem of autonomous incremental learning of a sensory-motor task, demonstrated by an operator guiding a robot. The proposed system allows for semisupervision of task learning and is able to adapt the environmental partitioning to the complexity of the desired behavior. A real dialogue based on actions emerges from the interactive teaching. The interaction leads the robot to autonomously build a precise sensory-motor dynamics that approximates the behavior of the teacher. The usability of the system is highlighted by experiments on real robots, in both indoor and outdoor environments. Accuracy measures are also proposed in order to evaluate the learned behavior as compared to the expected behavioral attractor. These measures, used first in a real experiment and then in a simulated experiment, demonstrate how a real interaction between the teacher and the robot influences the learning process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号