首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
The paper reports results on the design and analysis of the multivariable feedback Hinfin; robust system for plasma current, position and shape control in the fusion energy advanced tokamak (FEAT) developed in the International Thermonuclear Experimental Reactor (ITER) project. The system contains the fast loop with the SISO plasma vertical speed robust controller and the slow loop with the MIMO plasma current and shape robust controller. The goal is to study the resources of the system robustness to achieve a higher degree of the FEAT operation reliability. Two Hinfin; block diagonal controllers {K SISO, K MIMO} were designed by a mixed sensitivity approach in the framework of the disturbance rejection configuration. These controllers were compared with block diagonal decoupling, PI and LQG controllers at the set of FEAT key scenario points according to the multiple-criterion: nominal performance at minor disruptions, robust stability and robust performance. The Hinfin; controllers showed larger multivariable stability margin and better nominal performance.  相似文献   

2.
The problem of global robust stabilization is studied by both continuous‐time and sampled‐data output feedback for a family of nonminimum‐phase nonlinear systems with uncertainty. The uncertain nonlinear system considered in this paper has an interconnect structure consisting of a driving system and a possibly unstable zero dynamics with uncertainty, ie, the uncertain driven system. Under a linear growth condition on the uncertain zero dynamics and a Lipschitz condition on the driving system, we show that it is possible to globally robustly stabilize the family of uncertain nonminimum‐phase systems by a single continuous‐time or a sampled‐data output feedback controller. The sampled‐data output feedback controller is designed by using the emulated versions of a continuous‐time observer and a state feedback controller, ie, by holding the input/output signals constant over each sampling interval. The design of either continuous‐time or sampled‐data output compensator uses only the information of the nominal system of the uncertain controlled plant. In the case of sampled‐data control, global robust stability of the hybrid closed‐loop system with uncertainty is established by means of a feedback domination method together with the robustness of the nominal closed‐loop system if the sampling time is small enough.  相似文献   

3.
马敏  许中冲  常辰飞  薛倩 《测控技术》2016,35(10):42-45
为提高四旋翼无人机的飞行稳定性、无人飞行器控制系统的鲁棒性和控制精度,以建立的四旋翼无人机飞行控制系统模型为基础,采用现代控制理论与传统控制论相结合的方法,针对姿态角速率、姿态角分别设计内环LQR(线性二次型调节器)控制器,及外环PID控制的双回路闲环控制器.充分利用PID控制器易于掌握且对模型要求精度低、LQR控制器能改善内回路的动态特性和稳态性能的特点,完成四旋翼无人机的飞行控制.通过实验遴选该双闭环控制器相关参数并进行优化,实验结果表明所设计的双回路控制器控制性能指标良好.  相似文献   

4.
There is an increasing trend to employ advanced instrumentation and control strategies for batch processes where expensive products are being manufactured. In this paper, a robust nonlinear control strategy is developed for temperature tracking problems in batch reactors in the presence of parametric uncertainty. The controller has a multi-loop feedback configuration. An inner loop is designed for approximate input–output linearization of a nominal plant. The outer loop is designed for stability and robust performance by utilizing results from structured singular values (μ-synthesis). It is shown via simulation of a temperature tracking problem in batch synthesis that the controller provides excellent tracking despite parametric uncertainty.  相似文献   

5.
王璐  苏剑波 《控制理论与应用》2013,30(12):1609-1616
本文针对飞行器姿态跟踪控制问题, 考虑系统的内部模型不确定性和外界扰动, 设计了使跟踪误差一致最终有界的控制器. 以四元数为姿态参数, 建立系统的非线性误差模型; 将控制系统分为内环观测器和外环控制器分别设计, 其中, 线性扩张状态观测器作为系统内环将实际系统补偿为标称模型, 而外环非线性控制器则用于镇定非线性标称系统. 最后, 利用Lyapunov理论得到了一致最终有界的稳定性结论, 并基于频域理论, 分析了线性扩张状态观测器阶次对系统性能的影响. 姿态跟踪实验表明, 本文设计的控制系统能够有效实现飞行器的姿态跟踪控制.  相似文献   

6.
如何设计简单的控制策略对复杂非线性系统进行控制是控制界还未解决的难题.非线性广义最小方差控制律的提出使得非线性控制器的设计可以基于更为一般的非线性模型,并且控制器易于实现.整个系统包含时滞环节,稳定的非线性输入子系统和一个可以用多项式或者状态空间描述的子系统.通过最小化由误差加权项、状态加权项和输入加权项组成的信号的方差得到优化控制器.在系统为开环稳定的情况下,可用史密斯预估器进行控制.本文首先介绍了非线性广义最小方差控制的发展进程,然后综述了基于状态空间和多项式描述的系统的非线性广义最小方差控制器的设计以及其现状和今后的发展方向.  相似文献   

7.
In this brief, we extend the existing results on fault tolerant control via virtual actuator approach to a class of systems with Lipschitz nonlinearities to maintain the closed‐loop stability after actuator faults. This generalization is established by relying on the input‐to‐state stability properties of cascaded systems. The virtual actuator block, placed between faulty plant and nominal controller, generates useful input signals for faulty plant by using output signals of the nominal controller to guarantee the closed‐loop stability in the presence of actuator faults. This design problem is reduced to a matrix inequality that can be turned to an LMI by fixing a variable to a constant value and solving the resulting LMI feasibility problem. The proposed fault tolerant control method is successfully evaluated using a nonlinear system. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
A new control design method based on signal compensation is proposed for a class of uncertain multi‐input multi‐output (MIMO) nonlinear systems in block‐triangular form with nonlinear uncertainties, unknown virtual control coefficients, strongly coupled interconnections, time‐varying delays, and external disturbances. By this method, the controller design is performed in a backstepping manner. At each step of backstepping procedure, a nominal virtual controller is first designed to get desired output tracking for the nominal disturbance‐free subsystem, and then a robust virtual compensator is designed to restrain the effect of the uncertainties, delays involved in the subsystem, and the couplings among the subsystems. The designed controller is linear and time‐invariant, so the explosion of complexity in the control law is avoid. It is proved that robust stability and robust practical tracking property of the closed‐loop system can be ensured, and the tracking errors can be made as small as desired. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
In this paper, a two‐stage control procedure is proposed for stabilization of a class of strict‐feedback systems with unknown constant time delays and nonlinear uncertainties in the input. A nominal controller is first designed to compensate input time delays without considering input nonlinear uncertainties. Extended from backstepping algorithm, input delay compensation is realized by means of predicted states that are computed through integration of cascaded system dynamics, making the nominal closed‐loop system asymptotically stable. Based on the nominal controller presented for the input delay system, a multi‐timescale system is subsequently developed to estimate the unknown input nonlinearity and make the estimate approach the nominal control input as fast as possible. It is proved that the proposed control scheme can make states of the strict‐feedback systems converge to zero and all the signals of the closed‐loop systems are guaranteed to be bounded in the presence of input time delays and nonlinear uncertainties. Simulation verification is carried out to illuminate the effectiveness of the proposed control approach.  相似文献   

10.
Stability robustness properties of sampled data repetitive control systems are examined. Due to the infinite loop gain at periodic frequencies originating from the included internal model (Internal Model Principle), repetitive systems are, if properly designed, not very sensitive towards possibly time-varying gains. Uncertainty in plant delay is, however, a problem. Controller action timing becomes more or less out of order and may result in severe performance degradation, depending on model type and the number of frequencies included in the design. With a Linear Time-Invariant (LTI) controller comprising the commonly used time delay internal model, the closed loop system is stable for nominal time delay plus/minus at most one sampling interval. A controller based on a reduced order model, perhaps not modelling all harmonics, is utilized lo enhance robustness properties. Simulation runs with different controllers show how different models work in the closed loop, and also that synchronization in time is of utmost importance in order to utilize the delay internal model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号