共查询到19条相似文献,搜索用时 265 毫秒
1.
模糊学习控制在SCARA机器人轨迹跟踪中的应用 总被引:2,自引:0,他引:2
模糊学习控制以模糊控制提供反馈机制为主体,辅以迭代学习控制提供前馈补偿机制,来实现对期望轨迹的完全跟踪.把模糊学习控制应用于SCARA机器人的轨迹跟踪.仿真试验表明,该方法具有简单实用、跟踪精度高、学习速度快等优点. 相似文献
2.
3.
采用一类具有\"小误差放大、大误差饱和\"功能的非线性饱和函数来改进传统重复学习控制(Repetitive control, RC)机器人系统动力学控制, 形成一类新的非线性分散重复学习控制(Nonlinear decentralized repetitive control, NRC),使得在不增加驱动力矩的条件下获得了更快的响应速度和更高的轨迹跟踪精度. 应用Lyapunov直接稳定性理论和LaSalle不变性原理证明了闭环系统的全局渐近稳定性. 三自由度机器人系统数值仿真结果表明了所提出的非线性分散重复学习控制具有良好的控制品质. 相似文献
4.
针对高度非线性多关节机器人的轨迹跟踪问题,提出一类输出反馈重复学习控制算法,使得在只有位置信息可测以及模型信息不确定的条件下即能获得良好的控制品质.非线性滤波器的引入解决了现实中速度信号较难获得的问题,重复学习控制策略实现了对周期性参考输入的渐近稳定跟踪.应用Lyapunov直接稳定性理论证明了闭环系统的全局渐近稳定性.三自由度机器人系统数值仿真结果表明了所提出的输出反馈重复学习控制的有效性. 相似文献
5.
6.
针对非线性机器人系统的轨迹跟踪问题, 提出一种终端滑模重复学习混合控制方案. 该方案综合了重复学习控制和终端滑模技术的特性, 能够有效跟踪周期性参考信号, 抑制周期性和非周期性动态的干扰, 具有较强的鲁棒性和良好的轨迹跟踪性能, 且算法的实现不需要完全已知系统模型信息. 应用Lyapunov 稳定性理论证明了闭环系统的全局渐近稳定性. 三自由度机器人系统数值仿真结果验证了所提出的终端滑模重复学习控制的有效性.
相似文献7.
为了克服具有固定重力补偿的传统PD控制存在的不足,提高气动机械手位置控制的精度和控制系统的适应性和鲁棒性,借鉴生物免疫反馈响应过程的调节作用和模糊推理逻辑可逼近非线性函数的特性,将模糊控制算法和免疫反馈机理与具有固定重力补偿的传统PD控制算法相结合,提出了具有固定重力补偿的模糊免疫PD控制算法,并将它应用到气动人工肌肉驱动的机械手的固定点位置控制中.实验结果表明,该控制方法的控制性能优于常规的PD控制,具有一定的实际应用价值. 相似文献
8.
为跟踪或抑制仅周期已知的未知周期参考或扰动信号,提出一种新的重复学习控制方法,利用系统的稳态误差并通过迭代学习构造前馈补偿,实现了误差的渐近收敛,将所提出方法应用于一类常见的扰动信号和系统输出具有未知非线性关系的非线性系统,假设其满足连续里普希斯条件,利用重复学习控制器,系统的稳态误差可以减小到极低的程度,该方法控制精度高,实现简单,与传统的基于时延内模的重复控制方法相比,具有对非重复性干扰不敏感的优点,仿真结果验证了该方法的有效性。 相似文献
9.
10.
模糊逻辑控制及其应用概况许文达IntroductiontoFuzzyLogicalControlandtheGeneralConditionofIt'sApplication¥XuWenda模糊对uz。r)逻辑与计算机结合形成的Fu。。y控制系统为计... 相似文献
11.
G. Pan H. Xu C.M. Kwan C. Liang L. Haynes Z. Geng 《Control Engineering Practice》1996,4(12):1647-1658
In the active chatter control of machine tools, the most effective way to suppress the chatter is to place the actuator as close as possible to the tool tip. However, in practice, it is almost impossible to put the actuator at the same location of the tool tip. Also, in many machines the cutting tools are usually long and may be flexible. Both of these problems pose serious problems in machine chatter control. In order to control the chatter effectively and efficiently, a systematic methodology is proposed in this paper to deal with the modeling and control system design aspects of this challenging problem. Because of the flexibility effect in the tool shaft, conventional active control approaches may not perform in an efficient and effective manner. Here, two advanced control algorithms (LMS adaptive filter and fuzzy CMAC neural network) are proposed to counteract this problem. Experimental results on a lathe machine are also included. Approximately 20 dB reduction in chatter has been achieved. 相似文献
12.
针对一类单输入单输出不确定非线性重复跟踪系统,提出一种基于完全未知高频反馈增益的自适应迭代学习控制.与普通迭代学习控制需要学习增益稳定性前提条件不同,自适应迭代学习控制通过不断修改Nussbaum形式的高频学习增益达到收敛.经证明当迭代次数i→∞时,重复跟踪误差可一致收敛到任意小界δ.仿真结果表明了该控制方法的有效性. 相似文献
13.
14.
对传统模糊控制的双重特性进行了深入探讨.定性和定量分析都显示出模糊控制集中了相对应的线性控制和变结构滑模控制的特性.该双重特性可以通过改变属性函数和增益来调整.高的增益和多个属性函数会导致强的变结构控制和弱的线性控制,反之亦然.仿真结果证实了以上分析.因变结构控制更多地用于较复杂过程,而线性控制则用于较简单过程,故独特的双重特性对模糊控制的设计和调整影响重大.对于简单过程,模糊控制的初始增益可以用已调好的线性控制参数来设计;对于复杂过程,可用变结构控制理论来设计.模糊控制的双重特性有助于解释其对复杂过程有较佳的鲁棒性. 相似文献
15.
A constrained optimal ILC for a class of nonlinear and non-affine systems, without requiring any explicit model information except for the input and output data, is proposed in this work. In order to address the nonlinearities, an iterative dynamic linearization method without omitting any information of the original plant is introduced in the iteration direction. The derived linearized data model is equivalent to the original nonlinear system and reflects the real-time dynamics of the controlled plant, rather than a static approximate model. By transferring all the constraints on the system output, control input, and the change rate of input signals into a linear matrix inequality, a novel constrained data-driven optimal ILC is developed by minimizing a predesigned objective function. The optimal learning gain is unfixed and updated iteratively according to the input and output measurements, which enhances the flexibility regarding modifications and expansions of the controlled plant. The results are further extended to the point-to-point control tasks where the exact tracking performance is required only at certain points and a constrained data-driven optimal point-to-point ILC is proposed by only utilizing the error measurements at the specified points only. 相似文献
16.
当网络应用到控制系统中时,网络将引起时延,从而对闭环网络控制系统产生一些不利的影响,比如系统性能下降,系统不稳定等。本文介绍了通过在已有的PI控制器的基础上,再增加一个模糊逻辑补偿器来补偿网络控制系统中网络所引起的时延,其优点是不需要再重新设计已有的PI控制器,而只是简单地将模糊逻辑控制器的输出作为一个参数来调节PI控制器所提供的控制信号。文中采用了MATLAB/SIMULINK仿真,仿真结果表明了该方法的有效性。 相似文献
17.
The purposes of this paper are (i) to critically review existing results on the use of the systems theory for repetitive processes in the analysis of a wide class of linear iterative control laws, and (ii) to present some new results on controller design using this general approach. This paper first presents results on the stability and convergence properties of a general class of iterative learning control schemes using, in the main, theory first developed for the subclass of so‐called differential and discrete linear repetitive processes. A general learning law that uses information from the current and a finite number of previous trials is considered and the results are interpreted in terms of basic systems theoretic concepts such as the relative degree and minimum phase characteristics. It is also shown that a number of other approaches reported in the literature are, in fact, special cases of the results obtained in the repetitive process setting. In the second part of the paper, new results on controller design are given based on 2D transfer function matrices together with new results on the robustness of norm optimal iterative learning control schemes. 相似文献
18.
Non-work related movements (NWRM) of 10 experienced industrial workers performing light repetitive work were observed under a variety of conditions. More NWRM were observed for (1) machine-paced versus self-paced operations; and (2) a task with high mental load versus one with a low mental load. In addition, the age of the worker was found to be negatively correlated with NWRM. 相似文献