共查询到19条相似文献,搜索用时 62 毫秒
1.
本文关注基于支持向量机算法的入侵检测系统的优化问题.首先,介绍一个简单的基于单SVM的入侵检测系统.然后,推荐一种对输入特征进行重要性排序的方法.最后,根据分类结果,提出基于多SVMs的入侵检测系统模型. 相似文献
2.
3.
支持向量机在入侵检测中的应用 总被引:1,自引:1,他引:1
入侵检测是网络安全的重要领域.安全问题的日益严峻对于检测方法提出更高的要求.支持向量机是一种基于小样本学习的有效工具.继它在字体识别,人脸识别中得到成功应用后,它被成功地应用到入侵检测领域中.介绍了支持向量机的多种算法,例如二分类的支持向量机,一分类的支持向量机,多分类的支持向量机和针对大量训练样本的支持向量机在入侵检测中的应用.通过比较发现,用支持向量机进行检测入侵大大提高了入侵检测系统的性能. 相似文献
4.
对入侵检测和支持向量机的知识进行了基本的介绍,概述了支持向量机实现入侵检测的基本思想,提出了一个基于支持向量机的入侵检测模型,并对其中各个模块进行功能介绍,然后将支持向量机引入到入侵检测系统中。利用KDD99入侵检测数据进行了仿真实验,分析了该模型的工作过程。实验结果表明:该模型避免了高维特征空间的复杂计算,较好地解决了小样本、非线性、高维数、局部极小点等实际问题,能够较好地检测出入侵行为。 相似文献
5.
目前的入侵检测系统存在先验知识较少的情况下推广能力差的问题,针对各样本重要性的差异,提出了加权支持向量机方法并给出了对偶最优化问题的描述及其SMO训练算法.在入侵检测实验中,训练样本的重要性通过测试样本与该样本的空间距离来表征.实验表明,基于加权支持向量机的入侵检测系统在小样本(先验知识少)的条件下不但提高了入侵检测的精度,而且缩短了入侵检测时间. 相似文献
6.
支持向量机在入侵检测系统中的应用 总被引:1,自引:0,他引:1
为了提高信息系统的安全性,本文将基于统计学习理论的支持向量机方法应用到入侵检测系统中,保证了在先验知识不足的情况下,支持向量机分类器仍有较好的分类正确率,达到了能够对系统异常情况准确预测的目的。该方法避免了基于传统机器学习的局限性,保证了较强的推广能力,从而使整个入侵检测系统具有较好的检测性能。 相似文献
7.
基于模拟退火支持向量机的入侵检测系统 总被引:2,自引:0,他引:2
为了提高入侵检测系统在小样本集条件下的检测效率,将支持向量机用于网络入侵检测.支持向量机的参数决定了检测效率,然而难以选择合适的参数值,因此提出利用模拟退火算法来优化这些参数,并设计出基于参数优化的支持向量机用于入侵检测.通过对样本数据集中的样本进行实验性检测,并与原始支持向量机入侵检测系统进行比较,结果表明模拟退火支持向量机入侵检测系统检测率高、误报率低,并且缩短了训练时间和检测时间. 相似文献
8.
基于模糊支持向量机的网络入侵检测研究 总被引:3,自引:0,他引:3
模糊支持向量机理论属于统计学习理论,是支持向量机理论的推广,使支持向量机更好地运用到实际工作中。我们将其运用到网络入侵检测中,实验证明是可行的、高效的,有其特点和优势的。 相似文献
9.
10.
入侵检测系统(IDs)作为一种新兴的安全技术得到了广泛的应用。提出了一种基于多级支持向量机的网络入侵检测模型。用支持向量机(SVM)精确的二类分类功能,建立多级分类器对网络入侵行为分别检测出拒绝服务攻击、预攻击探测、未授权的尝试访问及其他可疑活动,入侵检测实验的结果表明了该方法不仅检测准确性高,而且有较快的训练与检测速度,同时表明了该方法的有效性。 相似文献
11.
支持向量机在模式识别中的核函数特性分析 总被引:27,自引:6,他引:27
支持向量机是20世纪90年代中期发展起来的一种机器学习技术,与传统人工神经网络不同之处在于前者基于结构风险最小化原理,后者基于经验风险最小化原理。支持向量机不仅结构简单,而且技术性能尤其是泛化能力与BP神经网络相比有明显提高。讨论了支持向量机的分类原理,并用多项式函数、径向基函数和感知机函数等3种核函数作为内积回旋,分别以平面点集分类、手写体汉字识别及双螺旋线识别为例,在不同的结构参数下进行了仿真实验,并对3种核函数的分类特性进行了对比分析,给出了在不同模式识别问题中3种核函数的选择条件。 相似文献
12.
入侵检测系统都存在误报、漏报及实时性差等缺点,需要大量或者完备的审计数据集才能达到比较理想的检测性能,并且训练学习时间较长,将支持向量机应用到入侵检测中,在先验知识不足的情况下,支持向量机分类器仍有较好的分类正确率,从而使得整个入侵检测系统具有较好的检测性能。 相似文献
13.
使用粗糙集和支持向量机检测入侵 总被引:1,自引:0,他引:1
提出了基于粗糙集理论和支持向量机(SVM)的入侵检测方法,利用粗糙集约简算法对样本集进行特征约简,删除对入侵检测结果影响不大的冗余特征,从而有效地降低了样本集的维数,解决了SVM训练时间长,样本集占用的存储空间过大的问题.实验证明,该方法能在不影响SVM检测精度的情况下,缩短SVM的训练和检测时间,有效地提高SVM的检测效率. 相似文献
14.
15.
传统的异常入侵检测算法存在误报、漏报率高等问题。为此,将支持向量机应用于网络流量异常检测,提出一种基于支持向量机的网络流量异常检测模型。实验证明,该模型具有较高的检测率,对未知攻击的检测精度也很高,说明了采用支持向量机技术进行入侵检测的有效性。 相似文献
16.
17.
入侵检测系统已经成为网络安全技术的重要组成部分。然而,传统的异常入侵检测技术需要通过对大量训练样本的学习才能达到较高的检测精度,而大量训练样本集的获取在现实网络环境中是比较困难的。本文研究在网络入侵检测中采用基于支持向量机(SVM)的主动学习算法,解决训练样本获取代价过大带来的问题。通过基于SVM的主动学习算
算法与传统的被动学习算法的对比实验说明,主动学习算法能有效地减少学习样本数及训练时间,能有效地提高入侵检测系统的分类性能。 相似文献
算法与传统的被动学习算法的对比实验说明,主动学习算法能有效地减少学习样本数及训练时间,能有效地提高入侵检测系统的分类性能。 相似文献
18.
入侵检测系统已经成为网络安全技术的重要组成部分,然而传统的异常入侵检测技术需要通过对大量训练样本的学习,才能达到较高的检测精度,而大量训练样本集的获取在现实网络环境中是比较困难的。文章研究在网络入侵检测中,采用基于支持向量机(SVM)的主动学习算法,解决训练样本获取代价过大带来的问题。文中通过基于SVM的主动学习算法与传统的被动学习算法的对比实验,显示出主动学习算法与传统的学习算法相比,能有效地减少学习样本,极大地提高入侵检测系统的分类性能。 相似文献
19.
随着网络的快速发展,网络安全成为计算机网络中一个重要的研究方向。网络攻击日益频繁,传统的安全防护产品存在漏洞, 入侵检测作为信息安全的重要防护手段弥补了防火墙的不足,提供了有效的网络入侵检测措施,保护网络安全。然而传统的入侵检测系统存在许多问题,基于机器学习的入侵检测方法实现了对网络攻击的智能检测,提高了入侵检测的效率,降低了漏报率和误报率。本文首先简要介绍机器学习的部分算法,然后对机器学习算法在网络入侵检测中的应用进行深入的分析,比较各个算法在入侵检测应用中的优势和缺点,最后总结了机器学习的应用前景,为获得性能良好的网络入侵检测和防御系统奠定基础。 相似文献