首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The contrast function remains to be an open problem in blind source separation (BSS) when the number of source signals is unknown and/or dynamically changed. The paper studies this problem and proves that the mutual information is still the contrast function for BSS if the mixing matrix is of full column rank. The mutual information reaches its minimum at the separation points, where the random outputs of the BSS system are the scaled and permuted source signals, while the others are zero outputs. Using the property that the transpose of the mixing matrix and a matrix composed by m observed signals have the indentical null space with probability one, a practical method, which can detect the unknown number of source signals n, ulteriorly traces the dynamical change of the sources number with a few of data, is proposed. The effectiveness of the proposed theorey and the developed novel algorithm is verified by adaptive BSS simulations with unknown and dynamically changing number of source signals.  相似文献   

2.
A robust partial-state feedback asymptotic regulating control scheme is developed for a class of cascade systems with both nonlinear uncertainties and unknown control directions. A parameter separation technique is introduced to separate the time-varying uncertainty and the unmeasurable state from nonlinear functions. Then, the Nussbaum-type gain method together with the idea of changing supply functions is adopted in the design of a smooth partial-state regulator that can ensure all the signals of the closed-loop system are globally uniformly bounded. Especially, the system state asymptotically converges to zero. The design procedure is illustrated through an example and the simulation results show that the controller is feasible and effective.  相似文献   

3.
For a class of systems with unmodeled dynamics, robust adaptive stabilization problem is considered in this paper. Firstly, by a series of coordinate changes, the original system is re-parameterized. Then, by introducing a reduced-order observer, an error system is obtained. Based on the system, a reduced-order adaptive backstepping controller design scheme is given. It is proved that all the signals in the adaptive control system are globally uniformly bounded, and the regulation error converges to zero asymptotically. Due to the order deduction of the controller, the design scheme in this paper has more practical values. A simulation example further demonstrates the efficiency of the control scheme.  相似文献   

4.
In this paper,the robust stability issue of switched uncertain multidelay systems resulting from actuator failures is considered.Based on the average dwell time approach,a set of suitable switching signals is designed by using the total activation time ratio between the stable subsystem and the unstable one.It is first proven that the resulting closed-loop system is robustly exponentially stable for some allowable upper bound of delays if the nominal system with zero delay is exponentially stable under these switching laws.Particularly,the maximal upper bound of delays can be obtained from the linear matrix inequalities.At last,the effectiveness of the proposed method is demonstrated by a simulation example.  相似文献   

5.
This paper is concerned with the problem of global output feedback stabilization in probability for a class of switched stochastic nonlinear systems under arbitrary switchings. The subsystems are assumed to be in output feedback form and driven by white noise. By introducing a common Lyapunov function, the common output feedback controller independent of switching signals is constructed based on the backstepping approach. It is proved that the zero solution of the closed-loop system is fourth-moment exponentially stable. An example is given to show the effectiveness of the proposed method.  相似文献   

6.
In this paper, we present an adaptive neuro-fuzzy controller design for a class of uncertain nonholonomic systems in the perturbed chained form with unknown virtual control coefficients and strong drift nonlinearities. The robust adaptive neuro-fuzzy control laws are developed using state scaling and backstepping. Semiglobal uniform ultimate bound-edness of all the signals in the closed-loop are guaranteed, and the system states are proven to converge to a small neigh-borhood of zero. The control performance of the closed-loop system is guaranteed by appropriately choosing the design parameters. By using fuzzy logic approximation, the proposed control is free of control singularity problem. An adaptive control-based switching strategy is proposed to overcome the uncontrollability problem associated with x 0 (t 0 ) = 0.  相似文献   

7.
For a discrete-time linear system with input delay, the predictor feedback law is the product of a feedback gain matrix with the predicted state at a future time instant ahead of the current time instant by the amount of the delay, which is the sum of the zero input solution and the zero state solution of the system. The zero state solution is a finite summation that involves past input, requiring considerable memory in the digital implementation of the predictor feedback law. The truncated predictor feedback, which results from discarding the finite summation part of the predictor feedback law, reduces implementation complexity. The delay independent truncated predictor feedback law further discards the delay dependent transition matrix in the truncated predictor feedback law and is thus robust to unknown delays. It is known that such a delay independent truncated predictor feedback law stabilizes a discrete-time linear system with all its poles at $z=1$ or inside the unit circle no matter how large the delay is. In this paper, we first construct an example to show that the delay independent truncated predictor feedback law cannot compensate too large a delay if the open loop system has poles on the unit circle at $z\neq 1$. Then, a delay bound is provided for the stabilizability of a general linear system by the delay independent truncated predictor feedback.  相似文献   

8.
A class of unknown nonlinear systems subject to uncertain actuator faults and external disturbances will be studied in this paper with the help of fuzzy approximation theory. Using backstepping technique, a novel adaptive fuzzy control approach is proposed to accommodate the uncertain actuator faults during operation and deal with the external disturbances though the systems cannot be linearized by feedback. The considered faults are modeled as both loss of effectiveness and lock-in-place (stuck at some unknown place). It is proved that the proposed control scheme can guarantee all signals of the closed-loop system to be semi-globally uniformly ultimately bounded and the tracking error between the system output and the reference signal converge to a small neighborhood of zero, though the nonlinear functions of the controlled system as well as the actuator faults and the external disturbances are all unknown. Simulation results demonstrate the effectiveness of the control approach.  相似文献   

9.
An IEEE 1588 based application scheme was proposed to achieve accurate time synchronization for a deep seafloor observatory network based on the communication topological structure of the Zhejiang University Experimental and Research Observatory. The principles of the network time protocol (NTP) and precision time protocol (PTP) were analyzed. The framework for time synchronization of the shore station, undersea junction box layer, and submarine science instrument layer was designed. NTP and PTP network signals were decoded by a PTP master clock on a shore station that receives signals from the Global Posi- tioning System and the BeiDou Navigation Satellite System as reference time sources. These signals were remotely transmitted by a subsea optical-electrical composite cable through an Ethernet passive optical network. Accurate time was determined by time synchronization devices in each layer. Synchronization monitoring experiments performed within a laboratory environment indicated that the proposed system is valid and has the potential to realize microsecond accuracy to satisfy the time synchronization requirements of a high-precision seafloor observatory network.  相似文献   

10.
We present how residual intensity modulation (RIM) affects the performance of a resonator fiber optic gyro (R-FOG) through a sinusoidal wave phase modulation technique. The expression for the R-FOG system's demodulation curve under RIM is obtained. Through numerical simulation with different RIM coefficients and modulation frequencies, we find that a zero deviation is induced by the RIM effect on the demodulation curve, and this zero deviation varies with the RIM coefficient and modulation frequency. The expression for the system error due to this zero deviation is derived. Simulation results show that the RIM-induced error varies with the RIM coefficient and modulation frequency. There also exists optimum values for the RIM coefficient and modulation frequency to totally eliminate the RIM-induced error, and the error increases as the RIM coefficient or modulation frequency deviates from its optimum value; however, in practical situations, these two parameters would not be exactly fixed but fluctuate from their respective optimum values, and a large system error is induced even if there exists a very small deviation of these two critical parameters from their optimum values. Simulation results indicate that the RIM-induced error should be considered when designing and evaluating an R-FOG system.  相似文献   

11.
提出了在时钟偏差规划过程中减小中心误差平方值的增量式松弛量分配方法.在给定的时钟周期下,根据当前约束条件中所包含的组合电路的最大/最小时延值的权重,合理地为具有不同变化量的约束条件边界分配不同的松弛量.实验结果表明:该方法可以有效地分配偏差值与约束边界间的安全区,从而大幅提高在工艺变化条件下电路的可靠性.  相似文献   

12.
With its advantages in wirelength reduction and routing flexibility compared with conventional Manhattan routing, X architecture has been proposed and applied to modern IC design. As a critical part in high-performance integrated circuits, clock network design meets great challenges due to feature size decrease and clock frequency increase. In order to eliminate the delay and attenuation of clock signal introduced by the vias, and to make it more tolerant to process variations, in this paper, we propose an algorithm of a single layer zero skew clock routing in X architecture (called Planar-CRX). Our Planar-CRX method integrates the extended deferred-merge embedding algorithm (DME-X, which extends the DME algorithm to X architecture) with modified Ohtsuki’s line-search algorithm to minimize the total wirelength and the bends. Compared with planar clock routing in the Manhattan plane, our method achieves a reduction of 6.81% in total wirelength on average and gets the resultant clock tree with fewer bends. Experimental results also indicate that our solution can be comparable with previous non-planar zero skew clock routing algorithm. Supported in part by the National Natural Science Foundation of China (Grant No. 60876026), and the Specialized Research Fund for the Doctoral Program of Higher Education (Crant No. 200800030026)  相似文献   

13.
在深亚微米下,变线宽技术是互连线优化的一种有效方法,针对时钟网布线,提出一种分布优化时延、面积和时钟偏差的变线宽算法,其中各阶段的优化是有机结合的,首先,提出一种基于敏感度的方法优化互连线树的延迟;而后在满足延迟约束的条件下,通过近似规划法使连线面积的增加最小;最后,为了确保时钟偏差小于给定的约束,进一步对时钟树枝宽度进行局部调整,实验表明,通过将基于敏感度的方法和较严格的数学规划方法结合起来可有  相似文献   

14.
在时钟布线中,时钟信号和时钟偏差对电路性能的影响越来越明显。针对传统的时钟网络拓扑生成算法存在的不足,提出了时钟二叉树的“多级”模型并设计了基于模拟退火方法的时钟二叉树形成算法。用该算法对随机测试例子和标准标杆测试例子的测试中发现,较之传统的启发式算法,该算法能产生更好的测试结果。  相似文献   

15.
时钟树综合在芯片设计后端物理设计过程中,对于保证数字集成电路的时序是非常重要的。针对设计中存在的分频时钟,在时钟树综合时,将源时钟和分频时钟放在同一个时钟树中,把分频时钟的时钟网络作为源时钟的子树,很好地解决了分频时钟和源时钟之间的时钟偏移,满足了同步时序要求。该方法用于实际设计项目中,取得了非常好的效果。  相似文献   

16.
提出一种时钟树布线算法,在给定偏差约束下,采用新的匹配策略考虑偏差约束进行局部拓扑优化,优先匹配延迟目标大的结点,将其置于时钟树拓扑结构底层;结合缓冲器的插入,抑制了蛇行线的产生.实验结果表明,对使用过时钟偏差调度算法优化后的电路,该算法可在时钟布线阶段有效地减少时钟线网中连线与缓冲器的总电容.  相似文献   

17.
分析了时钟树的性能要素:时钟树长度、时钟树偏差和时钟信号占空比,分析了改进时钟树性能的多个策略:合理的floorplan、合理的时钟创建源点、避免宏模块时钟端对时钟树平衡的不利影响、正确处理分离时钟门控、使用clock inverter改善时钟信号占空比。  相似文献   

18.
随着芯片工艺演进与设计规模增加,高性能众核处理器芯片时钟网络设计面临时序和功耗的全方位挑战。为降低芯片时钟网络功耗并缓解时钟网络分布受片上偏差影响导致的时钟偏斜,在H-Tree+MESH混合时钟网络结构的基础上,结合新一代众核处理器芯片面积大及核心时钟网络分布广的特点,基于标准多源时钟树设计策略构建多源时钟树综合(MRCTS)结构,通过全局H-Tree时钟树保证芯片不同区域间时钟偏斜的稳定可控,利用局部时钟树综合进行关键路径的时序优化以实现时序收敛。实验结果表明,MRCTS能在保证时钟延时、时钟偏斜等性能参数可控的基础上,有效降低时钟网络的负载和功耗,大幅压缩综合子模块的布线资源,加速关键路径的时序收敛,并且在相同电源电压和时钟频率的实测条件下,可获得约22.15%的时钟网络功耗优化。  相似文献   

19.
工艺参数变化下的基于统计时序分析的时钟偏差安排   总被引:1,自引:0,他引:1  
针对工艺参数变化的情况,提出一种成品率驱动的时钟偏差安排算法.提出统计时序约束图的概念,利用统计时序分析的结果将时序电路转换为统计时序约束图;将寻找关键环问题转换为最小费用/时间比值环问题,并按比例分配关键环中的时钟偏差的安全余量.实验结果表明,该算法有助于提高集成电路的成品率.  相似文献   

20.
为了减少时钟偏差规划所需的时间,提出一种准线性时间复杂度的时钟偏差规划方法.该方法以整数来描述延迟大小的时钟偏差规划算法,限制每次对时钟延迟调整的步进至少为1,降低了算法的时间复杂度;改变了传统的预先生成完整的时序图作为算法输入的流程,采用一种新的增量式延迟提取策略为时钟偏差规划算法提取关键边的权重,减少了生成时序图所需要的时间.实验结果表明,采用文中方法进行时钟偏差规划的效率很高,对包含数千触发器的基准测试电路,其运行时间仅为数十秒.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号