首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 711 毫秒
1.
Boron carbide B4C powders were subject to reactive spark plasma sintering (also known as field assisted sintering, pulsed current sintering or plasma assisted sintering) under nitrogen atmosphere. For an optimum hexagonal BN (h-BN) content estimated from X-ray diffraction measurements at approximately 0.4 wt%, the as-prepared BaCb-(BxOy/BN) ceramic shows values of Berkovich and Vickers hardness of 56.7 +/- 3.1 GPa and 39.3 +/- 7.6 GPa, respectively. These values are higher than for the vacuum SPS processed B4C pristine sample and the h-BN -mechanically-added samples. XRD and electronic microscopy data suggest that in the samples produced by reactive SPS in N2 atmosphere, and containing an estimated amount of 0.3-1.5% h-BN, the crystallite size of the boron carbide grains is decreasing with the increasing amount of N2, while for the newly formed lamellar h-BN the crystallite size is almost constant (approximately 30-50 nm). BN is located at the grain boundaries between the boron carbide grains and it is wrapped and intercalated by a thin layer of boron oxide. BxOy/BN forms a fine and continuous 3D mesh-like structure that is a possible reason for good mechanical properties.  相似文献   

2.
The reactive sintering of titanium carbide with titanium metal was studied using mechanical mixtures of fine-grained powders heated in vacuum above the TiC-Ti eutectic temperature. Mixtures with bulk compositions of TiC0.94 to TiC0.63 yielded nonstoichiometric carbide with less than 0.5 wt% residual titanium metal after sintering, while residual metal was observed at higher titanium concentrations. The effects of time, temperature, and composition on Mohs hardness, final porosity and final grain-size were determined using a Box-Wilson experimental design. The experimental ranges studied were sintering times of 10 to 100 min, sintering temperatures of 1650 to 1850° C, and compositions from TiC0.94 to TiC0.58. Over these experimental ranges, the effects of time and temperature were small compared with those of composition. The Mohs hardness increased approximately linearly from two to nine with increasing percentage of titanium metal in the starting powder. The average grain size ranged from 15 to 70μm, increasing with increasing time and temperature. For bulk compositions TiC0.94 to TiC0.70 grain growth was largely due to the conversion of titanium to substoichiometric carbide which grows epitaxially on the carbide grains. Substantial grain growth occurred for higher metal concentrations. The open porosity decreased from 28% to 16% as the amount of titanium metal in the starting powders was increased. Both the grain growth and the densification during reactive sintering of titanium-titanium-carbide mixtures were analysed in terms of a sintering model adapted from Kuczynski. A factor which empirically describes the behaviour of the system over a range of compositions was incorporated into the equations proposed by Kuczynski. Microstructural evidence and the activation energies for grain growth and densification all indicate that the rapid reaction between titanium metal and titanium carbide to form substoichiometric carbide occurs via short-circuit diffusion of carbon out of the carbide grains along Ti2C platelets. Low sintered densities are attributed to the rapid formation of a solid titanium-carbide skeleton which prevents significant particle rearrangement in the eutectic liquid. Solution-precipitation processes do not appear to contribute significantly to the densification in this system.  相似文献   

3.
Silicon carbide-titanium carbide (SiC-TiC) nanocomposite thin films were prepared by radiofrequency magnetron sputtering using SiC-TiC composite targets fabricated by spark plasma sintering. The SiC thin films were amorphous at substrate temperatures below 573 K and crystallized in the cubic crystal system (3C) at substrate temperatures greater than 773 K. Cubic SiC-TiC nanocomposite thin films, which contain a mixture of 3C-SiC and B1-TiC phases, were obtained at a TiC content of greater than 20 mol%. The amorphous films possessed a dense cross-section and a smooth surface. The morphology of the SiC-TiC nanocomposite thin films changed from granular to columnar with increasing substrate temperature. The SiC-TiC nanocomposite thin films prepared at TiC content of 70-80 mol% and substrate temperature of 573 K showed the highest hardness of 35 GPa.  相似文献   

4.
Ultrafine WC–Co cemented carbides, combining high hardness and high toughness, are expected to find broad applications. In this study, WC–10Co–0.4VC–0.4Cr3C2 (wt.%) nanocomposite powders, whose average grain size was about 30 nm, were fabricated by spray pyrolysis-continuous reduction and carbonization technology. The as-prepared nanocomposite powders were characterized and analyzed by chemical methods, scanning electron microscopy (SEM), transmission electron microscopy (TEM), BET analysis and atomic force microscopy (AFM). Furthermore, “sinterhip” was used in the sintering process, by which ultrafine WC–10Co cemented carbides with an average grain size of 240 nm were prepared. The material exhibited high Rockwell A hardness of HRA 92.8, Vickers hardness HV1 1918, and transverse rapture strength (TRS) of 3780 MPa. The homogeneously dispersed grain growth inhibitors such as VC, Cr3C2 in nanocomposite powder and the special nonmetal–metal nanocomposite structure of WC–10Co nanocomposite powder played very important roles in obtaining ultrafine WC–10Co cemented carbide with the desired properties and microstructure. There was an abundance of triple junctions in the ultrafine WC–10Co cemented carbide; these triple junctions endowed the sintered specimen with high mechanical properties.  相似文献   

5.
Nanocrystalline tungsten carbide-cobalt (WC-Co) composite powders produced through spray thermal decomposition-continuous reduction and carburization technology were used to prepare φ3.25 mm×38 mm ultrafine tungsten carbide-cobalt (WC-Co) cemented carbide rods through vacuum sintering plus sinterhip technology. The microstructure, Vickers hardness, density and Rockwell A hardness (HRA), transverse rupture strength (TRS), saturated magnetization and coercivity force were tested. The results show that the average grain size of the sintering body prepared through vacuum sintering plus sinterhip technology was 430 nm; transverse rupture strength (TRS) was 3850 MPa; Vickers hardness was 1890 and Rockwell A hardness of sintering body was 93. High strength and high hardness ultrafine WC-Co cemented carbide rods used to manufacture printed circuit board (PCB) drills were obtained.  相似文献   

6.
Diamond–silicon carbide composites were sintered at 10 GPa and three different temperatures: 1600, 1800, and 2000 °C. Distributions of residual surface stresses in diamond crystals were obtained by the analysis of Raman band shifts and splitting. It was noted that stresses concentrate around points of contacts between diamond crystals. Average stress increase with increasing sintering temperature. Complementary information on average sizes of crystallites, concentration of stacking faults, and population of dislocations in both diamond and SiC were obtained from X-ray diffraction profile analysis. It was observed that for both diamond and silicon carbide phases the average crystallite sizes decrease. The population of dislocations in the diamond phase increases with increasing sintering temperature and the population fluctuates in the SiC phase. Concentration of stacking faults was significant only in SiC.  相似文献   

7.
Densification kinetics study during microwave sintering of titanium nitride-based nanocomposite has been conducted. A series of TiN–SiC compositions with 1, 3, 5 wt% of silicon carbide were microwave sintered at relatively low sintering temperatures (900–1,300 °C) for 0–30 min. The SiC content influenced on heating uniformity and final density and grain-size achieved. Densification process during microwave sintering obeyed the mechanism of grain-boundary diffusion with activation energy of 235 kJ mol−1. Microwave sintering resulted in fine microstructure (~300 nm) and hence high values of micro hardness (~20 GPa).  相似文献   

8.
Cu部分代Co超细硬质合金研究   总被引:2,自引:0,他引:2  
基于Cu与Co相同的晶型结构和相似的原子结构,采用共沉淀方法,制备Cu部分代Co的WC—10Co硬质合金,研究Cu对材料的组织和力学性能的影响。实验结果表明,通过Cu—Co共沉淀方式将cu加入粘接相中,形成Co(Cu)固溶体,在液相烧结过程中Cu均匀地分布在Co中,可以降低WC在粘接相中的溶解度,有效阻碍WC颗粒的溶解...  相似文献   

9.
The Cu-W bulk nanocomposites of different compositions were successfully synthesized by high-energy ball milling of elemental powders. The nanocrystalline nature of the Cu-W composite powder is confirmed by X-ray diffraction analysis, transmission electron microscopy, and atomic force microscopy. The Cu-W nanocomposite powder could be sintered at 300-400 degrees C below the sintering temperature of the un-milled Cu-W powders. The Cu-W nanocomposites showed superior densification and hardness than that of un-milled Cu-W composites. The nanocomposites also have three times higher hardness to resistivity ratio in comparison to Oxygen free high conductivity copper.  相似文献   

10.
A multicomponent (TiZrHfNbTaMo)C ceramic has been fabricated by pressureless sintering at temperatures from 2100 ℃ to 2500 ℃,using an equimolar multicomponent carbide powder synthesized by carbothermal reduction as the starting material.Influence of sintering temperature on densification,microstructure and mechanical properties of the ceramics was investigated.The relative density increases with increasing sintering temperature,and a nearly fully dense sample is achieved by pressureless sintering at 2500 ℃.Average grain size increases from 3.7 to 15.2 μm with increasing sintering temperature from 2300 to 2500 ℃.The (TiZrHfNbTaMo)C ceramic sintered at 2400 ℃ exhibits a single phase fcc structure with homogeneous chemical composition,an average grain size of 7.0 μm and a relative density of 96.5%,while its measured hardness is 33.2 GPa at 100 mN and 23.2 GPa at 9.8 N.  相似文献   

11.
An atomized iron powder used in conventional powder metallurgy, mixed with 4 wt.% Cu powders was injection molded with carbonyl iron powder and a sintering aid. The use of atomized iron powder can reduce cost, but decreases packing density and sintering rate. To improve the densification of atomized powders, 20-40 wt.% carbonyl iron powder was added for increasing packing density and promoting sintering. The sintered alloy was characterized by the bulk density, mechanical properties, and scanning electron microscope observations. The results of sintering for the samples added with 30 wt.% carbonyl powder show that the relative bulk density, hardness, tensile strength and elongation are up to 83.87%. HRF 92.2, 315.5 MPa and 4%, respectively. The proportion of carbonyl iron powders and sintering temperature were found to influence the relative bulk density and the mechanical properties of the specimens significantly.  相似文献   

12.
Copper–chromium carbide composites containing a carbide phase of 20–30 vol% were obtained with the use of solid- and liquid-phase mechanosyntheses, followed by magnetic pulse compaction (MPC) and spark plasma sintering. The morphology, structural-phase composition, density, hardness and electrical conductivity of the composites were investigated. The structure of composites obtained by MPC represents regions of copper matrix hardened by superfine carbide precipitates surrounded by a layer of chromium carbide. In the composites obtained by spark plasma sintering, the copper matrix hardened by superfine carbide precipitates was divided into areas surrounded by a copper–chromium layer. A composite obtained by the MPC of the powders synthesized using solid-phase mechanosynthesis (MS) (copper, chromium and graphite) had the highest values of Vickers microhardness (4.6 GPa) and Rockwell hardness (HRA 69). The best value of electrical conductivity (36% IACS) was achieved using liquid-phase MS (copper, chromium and xylene) and spark plasma sintering. Liquid-phase MS is the only way to synthesize the powder with a small amount of the carbide phase and without contamination.  相似文献   

13.
Carbon nanotube/silver (CNT/Ag) nanocomposites include CNT volume fraction up to 10?vol.% were prepared by chemical reduction in solution followed by spark plasma sintering. Multiwalled CNTs underwent surface modifications by acid treatments, the Fourier transform infrared spectroscopy data indicated several functional groups loaded on the CNT surface by acid functionalisation. The acid-treated CNTs were sensitised and activated. Silver was deposited on the surface of the activated CNTs by chemical reduction of alkaline silver nitrate solution at room temperature. The microstructures of the prepared CNT/Ag nanocomposite powders were investigated by high-resolution scanning electron microscopy (HRSEM), transmission electron microscopy and X-ray powder diffraction analysis. The results indicated that the produced CNT/Ag nanocomposite powders have coated type morphology. The produced CNT/Ag nanocomposite powders were sintered by spark plasma sintering. It was observed from the microstructure investigations of the sintered materials by HRSEM that the CNTs were distributed in the silver matrix with good homogeneity. The hardness and the tensile properties of the produced CNT/Ag nanocomposites were measured. By increasing the volume fraction of CNTs in the silver matrix, the hardness values increased but the elongation values of the prepared CNT/Ag nanocomposites decreased. In addition, the tensile strength was increased by increasing the CNTs volume fraction up to 7.5?vol.%, but the sample composed of 10?vol.% CNT/Ag was fractured before yielding.  相似文献   

14.
为了降低无金属黏结相碳化钨(WC)硬质合金的烧结温度并获得较高的断裂韧度,采用MgO和B_(2)O_(3)协同增韧WC硬质合金。通过放电等离子烧结技术(SPS)在1400℃的较低温度下制备出致密的WC-MgO-B_(2)O_(3)硬质合金块体材料,研究MgO-B_(2)O_(3)对无金属黏结相WC硬质合金的烧结机理、微观组织演变以及力学性能的影响规律。结果表明:MgO-B_(2)O_(3)的添加促进了WC的烧结致密化,显著降低了无金属黏结相WC硬质合金的烧结温度。随着MgO-B_(2)O_(3)添加量的提高,组织中的部分第二相形貌发生显著改变,逐渐由短杆状转变为长杆状,再转变为聚集时的块状。当MgO-B_(2)O_(3)添加量达到8%(质量分数)时,块体材料具有较好的断裂韧度,为(9.45±0.37)MPa·m^(1/2),同时其硬度为(18.16±0.17)GPa。  相似文献   

15.
The phases, microstructures and mechanical properties of binderless WC bulk materials prepared by the spark plasma sintering technique were investigated systematically. The addition of carbon was added to eliminate the impurity phase W2C. The relative density, Vickers hardness and grain size increase obviously with increasing sintering temperature, but increase weakly with increasing pressure or sintering time. The high relative density of 99·1%, HV30 of 27·5 GPa and fracture toughness KIC of 4·5 MPa m1/2 of pure binderless WC bulk with a grain size of 400 nm was obtained by sintering the WC powders with a particle size of 200 nm and the addition of 0·63 wt-%C at 1800°C for 6 min under 70 MPa.  相似文献   

16.
Composites consisting of Al-Zn/Al2O3 have been synthesized using high energy mechanical milling. High energy ball milling increases the sintering rate of the composite powder due to increased diffusion rate. Owing to the finer microstructure, the hardness of the sintered composite produced by using the mechanically milled nanocomposite powder is significantly higher than that of the sintered composite produced by using the as-mixed powder. The mean crystallite size of the matrix has been determined to be 27 nm by Scherrer equation using X-ray diffraction data. The powders have been characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and differential thermal analysis (DTA). The effect of high-energy ball milling and subsequent annealing on a mixture of Al and ZnO has also been investigated. DTA result show that the reaction temperature of Al-ZnO decreases with the increase in the ball milling time.  相似文献   

17.
Functionally graded or functionally gradient WC–Co cemented carbides with Co and/or hardness gradients can potentially have great practical importance. In this article is described a novel sintering technique for fabrication of functionally gradient WC–Co cemented carbides. This technique includes (1) employing green carbide bodies with low (or high) carbon contents within the two-phase region of the W–Co–C phase diagram; (2) their pre-sintering in the solid state to obtain a certain green density and consequently gas permeability; (3) selective carburisation (or decarburisation) of their surface layer in a carburising (or decarburising) gas atmosphere; and (4) final liquid-phase sintering at tailored sintering conditions to obtain a Co drift (also known as ‘Co migration’) either from the surface towards the core or from the core towards the surface. The kinetics of Co drift between couples of model alloys with very similar WC mean grain sizes but different carbon contents were examined. The microstructure, hardness, Co contents, residual stresses and wear-resistance of the gradient cemented carbides with low-Co surface layers obtained by the selective surface carburisation of carbide green bodies with the original low carbon content were examined. Their surface layers were found to contain significantly less Co than the core resulting in a higher hardness of the surface layer. The surface layer is also characterised by high residual compressive stresses in both the carbide phase and binder phase, which results in an improved combination of hardness and fracture toughness. The microstructure, hardness and Co contents of gradient cemented carbide comprising high-Co surface layers obtained by selective surface decarburisation of carbide bodies with the original high carbon content were also examined. The surface layer of the gradient cemented carbide contains noticeably more Co than the core which is beneficial when using this functionally gradient carbide as a substrate for polycrystalline diamond coatings.  相似文献   

18.
Rapid quenching of deeply bulk undercooled alloy melts (200–250?K) before recalescence was used to produce three-dimensional bulk crystallite alloys. It was found that the micro-grain sizes of the prepared bulk crystallite alloys decreased with increasing undercooling. Dense crystal defects such as dislocation networks and annealing twins could be observed in the microstructures of the crystallite alloys. Substantial recrystallisation could be observed when annealing these crystallite alloys. These new findings could expand and enrich not only the traditional methods of preparing three-dimensional bulk crystallite alloys but also the traditional technologies of recrystallisation.  相似文献   

19.
宋春军  徐光亮 《材料导报》2006,20(Z2):23-25,39
碳化硅陶瓷是一种高性能的陶瓷,具有高强度、高硬度、耐高温、耐化学腐蚀、高热导率、低热膨胀以及低密度等性能,广泛应用于各个工业领域以及航空航天领域.从纳米复相陶瓷制备过程中的分散方法以及碳化硅基陶瓷的烧结方法与烧结助剂等方面详细论述了目前有关碳化硅基纳米复相陶瓷的研究进展.  相似文献   

20.
Titanium carbide (TiC) and carbon nanotubes (CNTs) were introduced into zirconium carbide (ZrC) ceramics to improve the fracture toughness. ZrC–TiC and ZrC–TiC–CNT composites containing 0–30 vol.% TiC and 0.25–1 mass% CNT were prepared by spark plasma sintering at temperatures of 1750–1850 °C for 300 s under a pressure of 40 MPa. Densification behavior, microstructure, and mechanical properties of the ZrC-based composites were investigated. Fully dense ZrC–TiC and ZrC–TiC–CNT composites with a relative density of more than 98 % were obtained. Vickers hardness of ZrC-based composites increased with increasing TiC content and the highest hardness was achieved with the addition of 20 vol.% TiC. Addition of CNTs up to 0.5 wt% significantly increased the fracture toughness of ZrC-based composites, whereas the addition of TiC did not have this effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号