首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
In this study, thermodynamic performance of supplementary/retrofit refrigerant mixtures for CFC12 used in existing automobile air-conditioners was examined. A thermodynamic computer analysis of an automobile air-conditioner was carried out for the initial screening of possible mixture candidates, and refrigerant mixtures composed of HCFC22, HFC134a, HCFC142b, RE170 (dimethylether), HC290 (propane), and HC600a (iso-butane) were proposed to supplement CFC12. Also a breadboard type refrigeration test facility was manufactured to verify the performance of the alternative refrigerant mixtures proposed through the computer analysis. Test results showed that HFC134a/RE170 mixture with zero ozone depletion potential is the best long term candidate to supplement CFC12. On the other hand, HCFC22/HFC134a/RE170 and HCFC22/HFC134a/HCFC142b mixtures are good only as short term supplementary/retrofit alternatives since they contain HCFC22. A hydrocarbon mixture of HC290/HC600a showed a good performance but its use in existing automobile air-conditioners should be carefully considered due to its flammability.  相似文献   

2.
A comparison of the refrigerants HFC 134a and CFC 12 has been carried out and the results from a theoretical analysis and from tests with an open piston compressor are reported in this paper. The results indicate that the tested compressor will give a greater refrigerating capacity with HFC 134a than with CFC 12 for certain operating conditions. However, the results also indicate an increased operating power for the compressor over the entire temperature range. As a result the coefficient of performance is decreased. Another noticeable result is dependency of the compressor's isentropic efficiency on temperature when using HFC 134a. This might be explained by the properties of the polyalkene glycol oil which is used with HFC 134a. The increased cost of using HFC 134a is justified if the environmental aspects are considered and the practical problems, such as the influence on the material in the refrigeration cycle, can be solved.  相似文献   

3.
Multi-stage heat pumps composed of a condenser, evaporator, compressor, suction line heat exchanger, and low and/or high stage economizers are studied by computer simulation. Their thermodynamic performance and design options are examined for various working fluids. In the simulation, HCFC22/HCFC142b and HFC134a are studied as an interim and long term alternatives for CFC12 while HFC32/HFC134a and HFC125/HFC134a are studied as long term alternatives for HCFC22. The results indicate that the three-stage super heat pump with appropriate mixtures is up to 27.3% more energy efficient than the conventional single-stage system with pure fluids. While many factors contribute to the performance increase of a super heat pump, the most important factor is found to be the temperature matching between the secondary heat transfer fluid and refrigerant mixture, which is followed by the use of a low stage economizer and suction line heat exchanger. The contribution resulting from the use of a high stage economizer, however, is not significant. With the suction line heat exchanger, the system efficiency increases more with the fluids of larger molar liquid specific heats. From the view point of volumetric capacity and energy efficiency, a 40%HCFC22/60%HCFC142b mixture is proposed as an interim alternative for CFC12 while a 25%HFC32/75%HFC134a mixture is proposed as a long term alternative for HCFC22.  相似文献   

4.
Nuclate pool boiling heat transfer coefficients (HTCs) of HCFC123, CFC11, HCFC142b, HFC134a, CFC12, HCFC22, HFC125 and HFC32 on a horizontal smooth tube of 19.0 mm outside diameter have been measured. The experimental apparatus was specially designed to accomodate high vapor pressure refrigerants such as HFC32 and HFC125 with a sight glass. A cartridge heater was used to generate uniform heat flux on the tube. Data were taken in the order of decreasing heat flux from 80 to 10 kW m−2 with an interval of 10 kW m−2 in the pool of 7 °C. Test results showed that HTCs of HFC125 and HFC32 were 50–70% higher than those of HCFC22 while HTCs of HCFC123 and HFC134a were similar to those of CFC11 and CFC12 respectively. It was also found that nucleate boiling heat transfer correlations available in the literature were not good for certain alternative refrigerants such as HFC32 and HCFC142b. Hence, a new correlation was developed by a regression analysis taking into account the variation of the exponent to the heat flux term as a function of reduced pressure and some other properties. The new correlation showed a good agreement with all measured data including those of new refrigerants of significantly varying vapor pressures with a mean deviation of less than 7%.  相似文献   

5.
The environmental effects of the depletion of stratospheric ozone due to refrigerants containing chlorine, have resulted in international treaties, laws and amendments (Copenhagen, 1992, to the Montreal protocol, 1987) to phase out and eliminate many common refrigerants. HCFC22 is one of these refrigerants and no such single component alternative has been discovered for this fluid. Zeotropic refrigerant mixtures (binary or ternary) are being considered as potential replacements for HCFC22. Evaporation and condensation heat-transfer characteristics, and inside tubes of heat exchangers, due to the use of zeotropic refrigerant mixtures, have been a subject of fundamental importance in evaluating the heat exchanger performances in the refrigeration and air-conditioning industry.In this study, it is proposed to determine the heat transfer and pressure drop coefficients during in-tube condensation of zeotropic mixture HFC23/HFC134a in a smooth copper tube with an inside diameter of 8.92 mm. The test section of three passes of 2 m each; it is a counter flow double-pipe heat exchanger with water flowing in the annulus and refrigerant in the inner tube. This test section is instrumented with temperature and pressure sensors. We have tested HCFC22, HFC134a, and three refrigerant mixtures of HFC23/HFC134a at different compositions to appreciate the effect of glide on heat transfer. The quality was from 1 to 80%, the heat flux ranged from 2 to 50 kW m−2 and mass flux varied from 80 to 480 kg m−2s−1. In these conditions, no effect of a glide on the heat-transfer coefficient was observed; this result was confirmed by using an equilibrium condensation curve analysis. The pressure drop can be calculated with classical correlations but with physical properties of the mixture.  相似文献   

6.
冰淇淋机制冷系统性能及新型环保制冷剂热力学分析   总被引:2,自引:0,他引:2  
针对软冰淇淋机首先确定了其计算工况,在分析冰淇淋机制冷循环的基础上,应用NIST的REFPROPV6.0软件编写了通用的计算程序,对不同工质的冰淇淋机循环过程进行了计算。经过计算可以发现,纯质HFC134a,HFC125,HFC143a,HFC32和HFC152a等中没有一种工质的热工性能,安全性能和环境性能可以完全满足替代要求,根据蒸气压相似原则,考虑各纯质的优缺点及混合制冷剂配对原则,确定了混合工质HFC134a/HFC32(70/30mass%)作为冰淇淋机的替代制冷剂。  相似文献   

7.
In this study, condensation heat transfer coefficients (HTCs) of a plain tube, low fin tube, and Turbo-C tube were measured for the low pressure refrigerants CFC11 and HCFC123 and for the medium pressure refrigerants CFC12 and HFC134a. All data were taken at the vapor temperature of 39°C with a wall subcooling of 3–8°C. Test results showed that the HTCs of HFC123, an alternative for CFC11, were 8.2–19.2% lower than those of CFC11 for all the tubes tested. On the other hand, the HTCs of HFC134a, an alternative for CFC12, were 0.0–31.8% higher than those of CFC12 for all the tubes tested. For all refrigerants tested, the Turbo-C tube showed the highest HTCs among the tubes tested showing almost an 8 times increase in HTCs as compared to the plain tube. Nusselt's prediction equation yielded a 12% deviation for the plain tube data while Beatty and Katz's prediction equation yielded a 20.0% deviation for the low fin tube data.  相似文献   

8.
A new refrigerant , HFC134a, seems to be the most promising substitute for CFC12. The vapour pressure of HFC134a-oil mixtures is one parameter that is important for a proper analysis of the operation of refrigeration systems. This paper presents vapour pressure curves for HFC134a and three kinds of representative oil for different oil percentages, and for the temperature range from -20 to +40°C (253.15–313.15 K).  相似文献   

9.
In this paper, pressure drop through a capillary tube is modeled in an attempt to predict the size of capillary tubes used in residential air conditioners and also to provide simple correlating equations for practicing engineers. Stoecker's basic model was modified with the consideration of various effects due to subcooling, area contraction, different equations for viscosity and friction factor, and finally mixture effect. McAdams' equation for the two-phase viscosity and Stoecker's equation for the friction factor yielded the best results among various equations. With these equations, the modified model yielded the performance data that are comparable to those in the ASHRAE handbook. After the model was validated with experimental data for CFC12, HFC134a, HCFC22, and R407C, performance data were generated for HCFC22 and its alternatives, HFC134a, R407C, and R410A under the following conditions: condensing temperature; 40, 45, 50, 55°C, subcooling; 0, 2.5, 5°C, capillary tube diameter; 1.2–2.4 mm, mass flow rate; 5–50 g/s. These data showed that the capillary tube length varies uniformly with the changes in condensing temperature and subcooling. Finally, a regression analysis was performed to determine the dependence of mass flow rate on the length and diameter of a capillary tube, condensing temperature, and subcooling. Thus determined simple practical equations yielded a mean deviation of 2.4% for 1488 data obtained for two pure and two mixed refrigerants examined in this study.  相似文献   

10.
An overview of the performance characteristics of possible working fluids in vapour-compression industrial heat-pump systems for medium to high temperature applications is presented. The refrigerants studied include HFC12, HCFC22 HFC134a, HCFC142b, HFC152a, a tenary blend of HCFC22 (40%), HCFC124 (43%) and HFC152a (17%), and NH3. The calculations are made for all the refrigerants for the same operating conditions and are compared with each other. For high-temperature applications, a compression- absorption heat-pump cycle (with NH3-H2O as the working fluid) is described. Its performance characteristics are discussed and compared with vapour-compression cycles with HCFC142b as the working fluid by using the concept of ‘thermodynamic temperature’.  相似文献   

11.
Ideal-Gas Heat Capacities and Virial Coefficients of HFC Refrigerants   总被引:2,自引:0,他引:2  
Thermodynamic properties of HFC (hydrofluorocarbon) compounds have been extensively studied with worldwide interest as alternative refrigerants. Both quality and quantity in the experimental data far exceed those for the CFC and HCFC refrigerants. These data now provide a great opportunity to examine the validity of theoretical models, and vice versa. Among them, the ideal-gas heat capacity C p 0 and virial coefficients derived from the experimental data are of particular interest, since they are directly related to the intramolecular and intermolecular potentials through the statistical mechanical procedure. There have been some discrepancies reported in the observed and theoretical C p 0 for HFC compounds. We have performed new calculations of C p 0 for several HFCs. The present results are consistent with the selected experimental values. The second (B) and third (C) virial coefficients have been reported for these HFC refrigerants from speed of sound data and Burnett PVT data. Often, a square well-type intermolecular potential is employed to correlate the data. However, the model potential cannot account consistently for both B and C coefficients with the same potential parameters. We have analyzed the data with the Stockmayer potential and obtained self-consistent results for various HFC (R-23, R-32, R-125, R-134a, R-143a, and R-152a) compounds with physically reasonable potential parameters.  相似文献   

12.
The performance characteristics of HFC134a in an industrial (water to water) heat-pump test facility at Electricité de France with a twin-screw compressor are presented. The performance of HFC134a has been studied in terms of performance parameters of the compressor (e.g. its volumetric and isentropic efficiencies) and of the heat-pump system (e.g. coefficient of performance and volumetric heating capacity) with a view to using it in new installations for low to medium temperature (< 70°C) applications as well as to replacing CFC12 in existing installations. The influence of degree of superheat on the miscibility of HFC134a with ester oil and on the viscosity of the oil-refrigerant mixture has also been studied for various discharge pressures.  相似文献   

13.
Forty-eight sets of the saturated liquid densities and bubble-point pressures of the binary HFC 152a + HCFC 142b system were measured with a magnetic densimeter coupled with a variable-volume cell. The measurements obtained at four compositions, 20, 40, 60, and 80 wt%, of HFC 152a cover a range of temperatures from 280 to 400 K. The experimental uncertainties in temperature, pressure, density, and composition were estimated to be within ±15mK, ±20kPa, ±0.2%, and between –0.14 and ±0.01 wt% HFC 152a (–0.01 and + 0.14 wt% HCFC 142b), respectively. The purities of the samples were 99.9 wt% for HFC 152a and 99.8 wt% for HCFC 142b. A binary interaction parameter, k ij , in the Peng-Robinson equation of state was determined as a function of temperature for representing the bubble-point pressures. On the other hand, two constant binary-interaction parameters, k ij and l ij , were introduced into the mixing rule of the Hankinson-Brobst-Thomson equation for representing the saturated liquid densities.  相似文献   

14.
In response to international protocol agreements and national regulatory actions promoted by the increasing concern for ozone depletion and the greenhouse effect, HFC 134a has emerged as a leading candidate for CFC 12 substitution in automotive air conditioners, centrifugal chillers and residential refrigerators and freezers. This Paper discusses compressor and refrigeration system requirements and information gaps for HFC 134a application as a CFC 12 substitute.  相似文献   

15.
三氟碘甲烷作为冰箱制冷剂的理论循环分析   总被引:6,自引:0,他引:6  
通过对环保工质三氟碘甲烷(CF3I)的饱和蒸汽压曲线、冰箱名义工况和变工况下循环性能等三方面的理论分析,发现CF3I和CF3I的摩尔组成在50%-65%范围的CF3I/HC290混合工质,理论循环性能与CFC12接近,具有作为冰箱中CFC12灌注式替代物的潜力.  相似文献   

16.
Carbon dioxide as a working fluid in refrigeration and heat pump systems is increasingly important in view of the CFC substitution problem. It is both under ecological and economical aspects an attractive alternative to the HFC working fluids at present in practical use. The thermophysical properties and characteristics of carbon dioxide are quite different from those of refrigerants used in conventional vapour compression cycles. Its application in conventional vapour compression refrigerating systems is limited by its critical parameters (tc=31.1°C and pc=73.8 bar). The possibility to use carbon dioxide also beyond these limits in high temperature processes, e.g. heat pumps, is given by the application of a trans-critical process. The design and construction of a commercial drying heat pump system (batch type cabinet dryer with 12 kW heating capacity and closed air circuit) using the natural working fluid carbon dioxide is shown and experimental results of investigations carried out are presented. Energy savings are given compared to manufacturer's data of energy consumption.  相似文献   

17.
HFC134a/HC600a/HC290 mixture a retrofit for CFC12 systems   总被引:1,自引:0,他引:1  
The environmental concerns with the impact of refrigerant emissions lead to the importance in identifying a long-term alternative to meet all requirements in respect of system performance and service. Even though HFC134a and HC blend (containing 55.2% HC600a and 44.8% HC290 by weight) have been reported to be substitutes for CFC12, they have their own drawbacks in respect of energy efficiency/flammability/serviceability aspects of the system. In this present work, experimental investigation has been carried out on the performance of an ozone friendly refrigerant mixture (containing HFC134a/HC blend) in two low temperature systems (a 165 l domestic refrigerator and a 400 l deep freezer) and two medium temperature systems [a 165 l vending machine (visi cooler) and a 3.5 kW walk-in cooler]. The oil miscibility of the new mixture with mineral oil was also studied and found to be good. The HFC134a/HC blend mixture that contains 9% HC blend (by weight) has better performance resulting in 10–30% and 5–15% less energy consumption (than CFC12) in medium and low temperature system, respectively.  相似文献   

18.
The CFC phasing-out regulations call for the phasing out of CFCs before the end of the decade. The process of revision of these regulations continues and the dates for phasing-out may be brought forward even more. After the phasing out of CFCs it will be important for the refrigeration industry to be able to use the existing equipment currently running on CFC12. This paper gives a brief outline of ICI developmental work on the new range of ester oils suitable for the alternative refrigerants. The simple procedure developed to enable the refrigeration industry to convert from CFC12 to HFC134a is described. The flushing procedure and the determination of residual mineral-oil content are set out. Five case studies where HFC134a has been retrofitted in five different application sectors are given at the end of the paper.  相似文献   

19.
A non-conventional heat pump working by a difference in density between two branches of a hydraulic vertical loop has been described. This system called thermogravimetric heat pump, TGHP, operates with a non-conventional regenerative thermodynamic cycle which remarkably improves COP values. The lower density in the ‘downward branch’ is obtained by a liquid–vapour two-phase flow. Performances and main geometrical characteristic trends, such as plant height Z and two-phase column diameter DT–PD have been drawn, varying the minimum cycle temperature between 15 and 25 °C and the user temperature, Tmax, in the range 60–70 °C. The carrier fluid is demineralized water; according to the peculiar working fluid—PP 50, HFC 134a and HFC 338cca—different solutions can be obtained, such as for 10–12 storey buildings or for skyscrapers. Yet, the results obtained with HFC 338cca must be accepted with some cautions while waiting for a better characterisation of such fluid. Chemical compatibility, thermal stability, environmental impact have been also taken into account in the choice of the operating couple, carrier fluid—working fluid. While the thermodynamic conversion process is non-conventional, the TGHP can be assembled by standardised technology. The compressor of a conventional plant is here replaced by a feeding pump and COP values obtained through a regenerative TGHP are globally larger than those of a common heat pump.  相似文献   

20.
In this study, external condensation heat transfer coefficients (HTCs) are measured for nonazeotropic refrigerant mixtures (NARMs) of HFC32/HFC134a and HFC134a/HCFC123 on a low fin and Turbo-C tubes. All measurements are taken at the vapor temperature of 39 °C with the wall subcooling of 3–8 °C. Test results showed that condensation HTCs of NARMs on enhanced tubes were severely degraded from the ideal values showing up to 96% decrease. HTCs of the mixtures on Turbo-C tube were degraded more than those on low fin tube such that HTCs of the mixtures at the same composition were similar regardless of the tube. The mixture with larger gliding temperature differences (GTDs), HFC134a/HCFC123, showed a larger heat transfer reduction from the ideal values than the mixture with smaller GTDs, HFC32/HFC134a. Heat transfer enhancement ratios of the enhanced tubes with NARMs were almost 2 times lower than those with pure refrigerants and they decreased more as the GTDs of the mixtures increased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号