首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kim SB  Yoon SY  Sung HJ  Kim SS 《Analytical chemistry》2008,80(15):6023-6028
A real-time, continuous optical particle separation method, termed cross-type optical particle separation, is investigated theoretically and experimentally. The trajectory of a particle subject to cross-type optical particle separation is predicted by solving the particle dynamic equation and compared with experimental data. For various flow velocities and particle sizes, the retention distances are measured where the displacement perpendicular to the fluid flow direction is referred to as the retention distance. The measured retention distances are in good agreement with theoretical predictions. The retention distance increases as the particle size increases due to the radiation force, but decreases as the flow velocity increases since the residence time of a particle in the laser beam decreases with increasing flow velocity. To evaluate the performance of the cross-type optical particle separation method, size-based separation resolution is derived theoretically in terms of the refractive index of the particle and instrumental fluctuations. Furthermore, an expression for the maximum resolution is derived.  相似文献   

2.
There is a compelling need to develop systems capable of processing blood and other particle streams for detection of pathogens that are sensitive, selective, automated, and cost/size effective. Our research seeks to develop laser-based separations that do not rely on prior knowledge, antibodies, or fluorescent molecules for pathogen detection. Rather, we aim to harness inherent differences in optical pressure, which arise from variations in particle size, shape, refractive index, or morphology, as a means of separating and characterizing particles. Our method for measuring optical pressure involves focusing a laser into a fluid flowing opposite to the direction of laser propagation. As microscopic particles in the flow path encounter the beam, they are trapped axially along the beam and are pushed upstream from the laser focal point to rest at a point where the optical and fluid forces on the particle balance. On the basis of the flow rate at which this balance occurs, the optical pressure felt by the particle can be calculated. As a first step in the development of a label-free device for processing blood, a system has been developed to measure optical pressure differences between the components of human blood, including erythrocytes, monocytes, granulocytes, and lymphocytes. Force differentials have been measured between various components, indicating the potential for laser-based separation of blood components based upon differences in optical pressure. Potential future applications include the early detection of blood-borne pathogens for the prevention of sepsis and other diseases as well as the detection of biological threat agents.  相似文献   

3.
Aerosols are particles in a size range from some nanometers to some micrometers suspended in air or other gases. Their relevance varies as wide as their origin and composition. In the earth's atmosphere they influence the global radiation balance and human health. Artificially produced aerosols are applied, e.g., for drug administration, as paint and print pigments, or in rubber tire production. In all these fields, an exact characterization of single particles as well as of the particle ensemble is essential. Beyond characterization, continuous separation is often required. State-of-the-art separation techniques are based on electrical, thermal, or flow fields. In this work we present an approach to apply light in the form of photophoretic (PP) forces for characterization and separation of aerosol particles according to their optical properties. Such separation technique would allow, e.g., the separation of organic from inorganic particles of the same aerodynamic size. We present a system which automatically records velocities induced by PP forces and does a statistical evaluation in order to characterize the particle ensemble properties. The experimental system essentially consists of a flow cell with rectangular cross section (1 cm(2), length 7 cm), where the aerosol stream is pumped through in the vertical direction at ambient pressure. In the cell, a laser beam is directed orthogonally to the particle flow direction, which results in a lateral displacement of the particles. In an alternative configuration, the beam is directed in the opposite direction to the aerosol flow; hence, the particles are slowed down by the PP force. In any case, the photophoretically induced variations of speed and position are visualized by a second laser illumination and a camera system, feeding a mathematical particle tracking algorithm. The light source inducing the PP force is a diode laser (lambda = 806 nm, P = 0.5 W).  相似文献   

4.
We introduce photophoretic velocimetry as a new technique for characterization of particulate matter on the basis of optical particle properties. Complementary to well-established techniques, we could show that, by measuring the photophoretic velocity of the single particles, it is possible to distinguish particles of different sizes as well as particles of one size but different refractive indices. The difference in photophoretic migration of particles can be applied to the separation of particles. Polystyrene, melamine, and SiO2 microparticles (0.3-10 mum) suspended in purified water were used as test samples for validation of a cross-flow setup. The particles were pushed perpendicular to a uniform, pulsation-free fluid flow by a focused He-Ne laser (lambda = 633 nm, P = 47 mW, I(max) = 14.0 kW cm(-2)) providing a well-defined Gaussian-shaped flux distribution. The migration behavior was observed by means of a video camera system, and the velocities and displacements were calculated by using an adapted particle imaging velocimetry code as an approach to automatic characterization. The photophoretic displacement depends on both flow conditions and particle properties and can be applied for separation means.  相似文献   

5.
Understanding the movement law and orientation control mechanism of non-spherical particles are significant for industrial applications. In this work, the flow characteristics of rectangular particles, in the uniform and wedge viscous fluid domain, are simulated by the immersed smoothed finite element method (IS-FEM). The influences of mesh resolution and time-step on particle velocity are analyzed, and the numerical procedure is validated by the published model and sedimentation experiments. The operating parameters that affect the particle flow are systematically studied, including Reynolds number, initial angle, channel offset distance, and aspect ratio. Moreover, the particle angles are adjusted by the velocity gradient of fluid domains. The result indicates that the velocities, angle, and drag of rectangular particles are closely related to the working conditions. The long axis of rectangular particles is consistent with the flow direction in shrinking fluid domains and is perpendicular to the flow direction in expanding fluid domains. The angle distribution law of rectangular particles in moving wedge fluid domains is determined. These findings provide a theoretical foundation for particle sedimentation and suspension flow, which is helpful for the further separation and orientation control of mixed particles.  相似文献   

6.
Kim SB  Kim JH  Kim SS 《Applied optics》2006,45(27):6919-6924
An in situ separation system, cross-type optical chromatography, is developed theoretically, and an analytic solution of the retention distance is derived. Particle trajectories in the cross-type optical chromatography are calculated for various sizes and materials of the particles and for flow velocities. Further, cross-type optical chromatography assisted by a particle beam generation system is designed.  相似文献   

7.
利用激光散斑测量装置,观察悬浮在电流变液中的淀粉颗粒在外加直流电场下的运动情况,表明当激光穿过电流变液时可以形成散斑。利用激光散斑测速法(LSV)对不同外加电场强度和不同浓度的淀粉电流变液中颗粒的运动速度进行了测量,通过自编的互相关计算软件对散斑图像进行了分析,获得了淀粉颗粒沿电场方向和垂直于电场方向的运动速度。实验结果表明在同一电场作用下,淀粉颗粒运动速度随时间的变化呈现震荡递减的趋势;并且存在一个临界颗粒浓度和临界电场强度,当低于此临界值时,颗粒运动速度增加,反之则减小。  相似文献   

8.
Wang JC  Hencken KR 《Applied optics》1986,25(5):653-657
We have developed a technique using light scattered from individual particles in the near-forward direction to measure particle size in the range of 10-200 microm. This technique uses the Mie scattering theory to relate the measured light intensity to particle size based on calibration techniques employing pinholes and water droplets of known size. We have applied a unique two-color optical arrangement to minimize the edge effect which can cause incorrect size measurements for particles that pass through the edge of the laser beam focal volume. In this paper we describe our experimental technique and the results of size measurements obtained with this technique for water droplets and pulverized coal particles.  相似文献   

9.
Microfluidic particle sorter employing flow splitting and recombining   总被引:1,自引:0,他引:1  
Yamada M  Seki M 《Analytical chemistry》2006,78(4):1357-1362
This paper describes an improved microfluidic device that enables hydrodynamic particle concentration and size-dependent separation to be carried out in a continuous manner. In our previous study, a method for hydrodynamic filtration and sorting of particles was proposed using a microchannel having multiple branch points and side channels, and it was applied for continuous concentration and separation of polymer particles and cells. In the current study, the efficiency of particle sorting was dramatically improved by geometrically splitting fluid flow from a main stream and recombining. With these operations, particles with diameters larger than a specific value move toward one sidewall in the mainstream. This control of particle positions is followed by the perfect particle alignment onto the sidewall, which increases the selectivity and recovery rates without using a liquid that does not contain particles. In this study, a microchannel having one inlet and five outlets was designed and fabricated. By simply introducing particle suspension into the device, concentrations of 2.1-3.0-microm particles were increased 60-80-fold, and they were collected independently from each outlet. In addition, it was demonstrated that the measured flow rates distributed into each side channel corresponded well to the theoretical values when regarding the microchannel network as a resistive circuit.  相似文献   

10.
Kim HB  Kogi O  Kitamura N 《Analytical chemistry》1999,71(19):4338-4343
A laser trapping-microspectroscopy system combined with a fluid manifold was developed to manipulate and analyze "single" microparticles. A sample solution containing microparticles was introduced to a flow cell set on a microscope stage, and a single particle was trapped by a 1064-nm laser beam. With the particle being trapped, the other particles were pumped out by flowing water to hold the unique microparticle in the flow cell. Under solution-flow conditions, a single microparticle was laser trapped in balance with the gradient (F(g)) and Stokes forces (F(s)) experienced by the particle, and thus, the trapped position was shifted to the downstream side of the 1064-nm laser beam focus. Flow rate and particle size dependencies of this particular positional displacement of the particle were discussed in terms of F(g) and F(s). On the basis of these studies, optical requirements to conduct absorption microspectroscopy of a laser-trapped particle were optimized, and the technique was applied to study a time course of dye adsorption processes in single microparticles. The adsorption rate of Rhodamine B was determined for individual microparticles for the first time.  相似文献   

11.
Particle dispersion and separation resolution of pinched flow fractionation   总被引:1,自引:0,他引:1  
This paper investigates a hydrodynamic particle separation technique that employs pinching of particles to a narrow microchannel. The particles are subject to a sudden expansion which results in a size-based particle separation transverse to the flow direction. The separation resolution and particle dispersion are measured using epifluorescence microscopy. The resolution and dispersion are predicted using a compact theoretical model. Devices are fabricated using conventional soft lithography of polydimethylsiloxane. The results show that the separation resolution is a function of the microchannel aspect ratio, particle size difference, and the microchannel sidewall roughness. A separation resolution as large as 3.8 is obtained in this work. This work shows that particles with diameters on the order of the sidewall roughness cannot be separated using pinched flow fractionation.  相似文献   

12.
Doppler spectra from contrast agents crossing an ultrasound field   总被引:1,自引:0,他引:1  
When contrast agents are injected in a fluid, it is implicitly assumed that they move at the same velocity as the fluid itself. However, a series of in vitro tests performed by using air-filled microbubbles suspended in distilled water, have shown that the Doppler spectrum generated in this case may be notably different from that obtained from non-resonating scatterers. In this paper, we show, through a simple simulation model, that the actual movement of microbubbles may be predicted as the result of the complex balance between two forces: the ultrasound radiation force, which tends to move the particles along the sound beam direction, and the fluid drag force, which tends to move the particles along the fluid stream. The contrast agents turn out to be displaced only during the passage of the ultrasound burst; during the remaining time, they are maintained at the fluid velocity by the drag force. Based on the total particle displacement estimated between consecutive pulses, a series of Doppler spectra corresponding to different intensity levels was computed. This series was shown to be in excellent agreement with the experimental spectra obtained in vitro using Levovist(R) (Schering AG, Berlin, Germany) particles suspended in distilled water flowing at a steady rate.  相似文献   

13.
Behind periodic amplitude or phase objects, the object transmittance is repeated at the so-called Talbot distances. In these planes perpendicular to the propagation direction, Talbot self-images are formed. In the case of plane wave illumination, the distances between the self-images are equally spaced. A periodic pattern called optical carpet or Talbot carpet is formed along the propagation direction. We show theoretically how the presence of spherical particles (10 to 100 μm in diameter) behind gratings of 20 and 50 μm period affects the formation of Talbot carpets and Talbot self-images at 633 nm illumination wavelength. The scattering of the particles is modeled by the Fresnel diffraction of its geometrical shadow. We analytically calculate the interference of the diffraction orders of rectangular and sinusoidal amplitude gratings disturbed by the presence of particles. To verify our model, we present measurements of Talbot carpets perturbed with both opaque disks and transparent spheres, and discuss the effects for various size parameters. We present an approach to simulate the movement of particles within the Talbot pattern in real time. We simulate and measure axial and lateral particle movements within a probe volume and evaluate the effect on the signal formation in a Talbot interferometric setup. We evaluate the best system parameters in terms of grating period and particle-detector-distance for a prospective measuring setup to determine characteristics of flowing suspensions, such as particle volume concentration or particle size distribution.  相似文献   

14.
The purpose of this study is to investigate the fundamental characteristics of particle movement under laser radiation pressure from the viewpoint of particle separation. In this study, the radiation pressure exerted on a spherical particle was calculated by using a simple geometrical optics model and the simulation of particle movement in a laser beam was performed. Further, the movement of particles under the laser radiation pressure was experimentally observed to confirm the accuracy of simulation. As a result, it was possible to simulate particle movement with the two-dimensional equations of motion by considering radiation pressure, viscous drag, gravity, and buoyancy as the forces acting on a particle. The possibility of particle separation according to the refractive index was suggested since the difference in laser radiation pressure was large enough to discriminate the particles.  相似文献   

15.
Wang Y  Zhang Z  Zhang L  Li F  Chen L  Wan QH 《Analytical chemistry》2007,79(13):5082-5086
Fritless packed beds comprised of magnetically responsive octadecylsilane bonded silica particles have been constructed for reversed-phase electrochromatography. The magnetic particles were immobilized in the capillary by applying an external magnetic field transverse to the direction of electroosmotic flow. Being subjected to the interplay of fluid dragging and magnetic forces, the initial loosely packed particle assembly was compacted into a uniform packing structure. The magnetically immobilized beds obtained were used as stationary phases for separation of neutral compounds, with retention behavior and column efficiency similar to those of slurry-packed columns. The results suggest that the magnetic attraction approach to fritless column packing may be used for construction of advanced chip-based chromatography, especially in complex architectures comprising curved and intersecting channels.  相似文献   

16.
Lao AI  Trau D  Hsin IM 《Analytical chemistry》2002,74(20):5364-5369
Electric field flow fractionation (EFFF) is a powerful separation technique based on an electrical field perpendicular to a pressure-driven flow. Previous studies of microelectric field flow fractionation (micro-EFFF) indicate that separation performance was limited due to a weak effective electric field caused by polarization layers on the electrode surfaces. In this work, we report on a micro-EFFF device that uses a pulsed voltage scheme to overcome these limitations. The device was fabricated in indium tin oxide (ITO)-coated glass with ITO as electrodes. The effective electric field for pulsed voltage operation was found to be 50-fold stronger when compared with constant voltage operation. A strong influence of pulsed voltage frequency on nanoparticle retention times was observed. Using pulsed voltage, improved separation of polystyrene particles of different surface charge and particle size is demonstrated. Pulsed voltage also offers more parameters compared to the constant voltage mode, e.g., pulse frequency, duty cycle, and waveform to optimize the retention behavior of analytes.  相似文献   

17.
We demonstrate that optical trapping combined with confocal Raman spectroscopy using a single laser source is a powerful tool for the rapid identification of micrometer-sized particles in an aqueous environment. Optical trapping immobilizes the particle while maintaining it in the center of the laser beam path and within the laser focus, thus maximizing the collection of its Raman signals. The single particle is completely isolated from other particles and substrate surfaces, therefore eliminating any unwanted background signals and ensuring that information is collected only from the selected, individual particle. In this work, an inverted confocal Raman microscope is combined with optical trapping to probe and analyze bacterial spores in solution. Rapid, reagentless detection and identification of bacterial spores with no false positives from a complex mixed sample containing polystyrene and silica beads in aqueous suspension is demonstrated. In addition, the technique is used to analyze the relative concentration of each type of particle in the mixture. Our results show the feasibility for incorporating this technique in combination with a flow cytometric-type scheme in which the intrinsic Raman signatures of the particles are used instead of or in addition to fluorescent labels to identify cells, bacteria, and particles in a wide range of applications.  相似文献   

18.
Gravitational field-flow fractionation (GrFFF) is a useful technique for fast separation of micrometer-sized particles. Different sized particles are carried at different velocities by a flow of fluid along an unobstructed thin channel, resulting in a size-based separation. They are confined to thin focused layers in the channel thickness where force due to gravity is exactly opposed by hydrodynamic lift forces (HLF). It has been reported that the HLF are a function of various parameters including the flow rate (or shear rate), the size of the particles, and the density and viscosity of the liquid. The dependence of HLF on these parameters offers a means of altering the equilibrium transverse positions of the particles in GrFFF, and hence their elution times. In this study, the effect of the viscosity of the carrier fluid on the elution behavior (retention, zone broadening, and resolution) of micrometer-sized particles in GrFFF was investigated using polystyrene (PS) latex beads as model particles. In order to change the carrier liquid viscosity without affecting its density, various amounts of (hydroxypropyl) methyl cellulose (HPMC) were added to the aqueous carrier liquid. It was found that particles migrate at faster rates as the carrier viscosity is increased, which confirms the dependence of HLF on viscosity. At the same time, particle size selectivity decreased but peak shape and symmetry for the more strongly retained particles improved. As a result, separation was improved in terms of both the separation time and resolution with increase of carrier viscosity. A theoretical model for plate height in GrFFF is also presented, and its predictions are compared to experimentally measured values.  相似文献   

19.
A laboratory optical probe was developed to simultaneously determine the following particle characteristics: circularity, particle projection area, equivalent diameter of a circle, length of the particle outline or perimeter, maximum chord length, aspect ratio, and particle velocity. Using the projection area and the perimeter, the particle shape factor circularity can be determined. The aspect ratio was approximated by the ratio of the equivalent diameter to the maximum chord length. The basic measuring principle is multi-point scanning of the particle shadow image by a line of optical fibers. In addition, the particle velocity can be measured by a differential spatial filter of optical fibers. These fibers are step index fibers with a core diameter of 64 µm and cladding of 70 µm. The shadow image of a single particle was generated by a parallel laser beam. The uncertainty of the measured circularity and aspect ratio was investigated by using metal wires with diameters of 0.12 to 0.5 mm as test particles with known circularity and aspect ratio. The standard deviations were 1.9% for the circularity and 15.5% for the approximated aspect ratio. In addition, the optical probe system was investigated by measurements of solid particles with different shapes. As an example, the results of sand, marjoram seed, and metallic oxide particles are shown. Using 1000 sand particles, the correlation between equivalent diameter and particle velocity could be demonstrated. The presented configuration of the optical probe is applicable in the size range of 0.1 to 0.9 mm and up to a particle velocity of 5 m/s.  相似文献   

20.
A laboratory optical probe was developed to simultaneously determine the following particle characteristics: circularity, particle projection area, equivalent diameter of a circle, length of the particle outline or perimeter, maximum chord length, aspect ratio, and particle velocity. Using the projection area and the perimeter, the particle shape factor circularity can be determined. The aspect ratio was approximated by the ratio of the equivalent diameter to the maximum chord length. The basic measuring principle is multi-point scanning of the particle shadow image by a line of optical fibers. In addition, the particle velocity can be measured by a differential spatial filter of optical fibers. These fibers are step index fibers with a core diameter of 64 µm and cladding of 70 µm. The shadow image of a single particle was generated by a parallel laser beam. The uncertainty of the measured circularity and aspect ratio was investigated by using metal wires with diameters of 0.12 to 0.5 mm as test particles with known circularity and aspect ratio. The standard deviations were 1.9% for the circularity and 15.5% for the approximated aspect ratio. In addition, the optical probe system was investigated by measurements of solid particles with different shapes. As an example, the results of sand, marjoram seed, and metallic oxide particles are shown. Using 1000 sand particles, the correlation between equivalent diameter and particle velocity could be demonstrated. The presented configuration of the optical probe is applicable in the size range of 0.1 to 0.9 mm and up to a particle velocity of 5 m/s.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号